
Macnica Americas

Altera SoC Embedded Design Suite Page 1

Altera SoC Embedded Design Suite

Version 2.0

March 18, 2014

Corporate HQ & Design Center
380 Stevens Ave. Suite 206

Solana Beach, CA 92075
http://www.macnica-na.com

http://www.macnica-na.com/

Macnica Americas

Altera SoC Embedded Design Suite Page 2

About Macnica Americas
Macnica Americas is a franchised semiconductor distributor for multiple, high-tech suppliers within

North America. Our business model emphasizes unsurpassed technical support and knowledge versus

other distribution options at no cost premium. Macnica Americas is the North American based division

of Macnica Inc., a $2.4B global leader in semiconductor distribution. We maintain a field support staff

as well as centralized design & applications teams.

Optional design services are headquartered in San Diego, CA., USA and offer partial or full turnkey

design of FPGAs, power distribution networks, and full PCB design. Our expertise includes all aspects of

high speed communications protocols and networking, video broadcast, signal processing, and storage

applications. Macnica’s specialty is high density, high speed complex FPGA designs utilizing multiple IP

cores with fast time to market requirements.

Macnica can help you deliver a winning project with the unique combination of technical support,

custom IP, and design services. Setup a meeting today!

http://www.macnica-na.com

License and Terms of Use
This lab with its associated source code and support files, are being provided on an "as-is" basis and as

an accommodation. Therefore all warranties, representations or guarantees of any kind (whether

express, implied or statutory) including, without limitation, warranties of merchantability, non-

infringement, or fitness for a particular purpose, are specifically disclaimed.

This source code may only be used in an Altera programmable logic device and may not be distributed

without permission from Macnica Americas, Inc. It is provided free of royalties or fees of any kind.

http://www.macnica-na.com/

Macnica Americas

Altera SoC Embedded Design Suite Page 3

Table of Contents
About Macnica Americas .. 2

License and Terms of Use ... 2

1 Lab Overview... 4

1.1 Introduction and Goals ... 4

1.2 Hardware and Software Requirements .. 4

1.3 Assistance .. 4

1.4 Lab Agenda and Milestones .. 4

2 Lab Instructions ... 6

2.1 Set-up Host & Target and Launch DS-5 ... 6

2.2 Connect to Remote Target .. 8

2.3 Import Linux Application ... 13

2.4 Debug Linux Application ... 16

2.5 Debug Running Linux Kernel ... 20

2.6 View Peripheral Registers ... 26

2.7 Trace Linux Kernel execution .. 28

2.8 Enable Cross-Triggering .. 33

2.8.1 Program the EPCQ PROM ... 34

2.8.2 Enable cross-triggering.. 35

2.8.3 HPS to FPGA cross-triggering .. 37

2.8.4 FPGA to HPS cross-triggering .. 41

3 Notes ... 44

Document Revision History ... 45

Macnica Americas

Altera SoC Embedded Design Suite Page 4

1 Lab Overview

1.1 Introduction and Goals
The Altera® system on a chip (SoC) Embedded Design Suite (EDS) is a comprehensive tool suite for
embedded software development on Altera SoC devices. The Altera SoC EDS contains
development tools, utility programs, run-time software, and application examples that enable
firmware and application software development on the Altera SoC hardware platform.

The Altera SoC EDS provides the tools you need to work more productively, improve your
software quality, and quickly bring your product to market.

This lab is designed as a self-paced-learning tool for understanding the fundamentals of using the
tools and reference designs included in the Altera SoC EDS installation. It is highly recommended
persons attend additional training, such as that offered by Altera directly, for more detailed
education on this rather complex flow and device family.

The lab is broken into a series of major sections or milestones representing the common uses of
the EDS, ARM DS-5 and reference designs. Unlike other trainings you may have had, this lab does
not explicitly indicate every button to push or value to enter. Instead, your goal is described with
the necessary information given. If you are having problems, each section concludes with a series
of hints related to the tasks proposed.

1.2 Hardware and Software Requirements
 Macnica Helio SoC Evaluation board with 2 micro-USB cables and 1 Ethernet cable

 This lab uses a Windows host computer, as can be seen from the screenshots and the issued
commands. However, the scenario can also be run on a Linux machine which is the more
typical development environment for embedded Linux.

 Quartus II v13.1 (recommended, web or subscription edition) or stand-alone device
programmer and SignalTap II Logic Analyzer

 Altera SoC EDS v13.1 installed

 The ARM DS-5 AE will be installed with the SoC EDS and a license will be required.

 microSD card loaded with Helio Linux kernel v3.9: helio_sdimage_v3.9.tar.gz

 Downloaded Linux kernel v3.9 source for debug: socfpga-3.9-rel.tar.gz

1.3 Assistance
A dedicated e-mail account has been setup to receive support requests for the vWorkshop series.

Please identify the course (in this case SoC EDS) in addition to details on the question.

workshophelp@macnica.com

1.4 Lab Agenda and Milestones

Set-up Host & Target and Launch DS-5

A few items will need to be set-up on both the host PC as well as the target SoC device running Linux.

This includes extracting the Linux kernel source for debugging, setting the IP address of the target if a

DHCP server is not available and setting up a root password.

http://www.rocketboards.org/pub/Documentation/MacnicaHelioSoCEvaluationKit/helio_sdimage_v3.9.tar.gz
http://git.rocketboards.org/?p=linux-socfpga.git;a=snapshot;h=socfpga-3.9-rel;sf=tgz
mailto:workshophelp@macnica.com?subject=vWorkshop%20Help%20-%20EDS

Macnica Americas

Altera SoC Embedded Design Suite Page 5

Connect to Remote Target

The ARM DS-5 AE can run and debug programs directly on the target with the help of the Remote
System Explorer (RSE). Before this feature can be used, the RSE needs to be configured to connect to
the target board running Linux.

Import Linux Application

There are several example software applications included with the SoC EDS install. This lab will be using

the simple “Hello World” Linux application.

Debug Linux Application

Once the “Hello World” application is compiled and an executable is produced, you will use the remote

system connection to download and debug the application.

Debug Running Linux Kernel

It is required for this lab that the microSD card has a working Linux kernel based on the Helio golden

reference design (GHRD). The ARM DS-5 offers powerful tools for Linux kernel and driver developers

that are accessed via the USB Blaster-II debug interface. A licensed DS-5 in required.

View Peripheral Registers

The ARM DS-5 Altera Edition allows you to specify the peripheral IP register descriptions using SVD files.
The SVD files are a result of the hardware project compilation using Quartus-II. The SVD files contain the
description of both HPS peripheral registers (UART, EMAC, timers etc.) and soft IP peripheral registers
residing in the FPGA.

Trace Linux Kernel execution

ARM DS-5 provides powerful tracing features, allowing PTM and STM tracing and also allows for
different tracing buffer memories.

Enable Cross-Triggering

The Altera SoC FPGA offers powerful cross-triggering capability between the HPS and the FPGA fabric.
The HPS can trigger the FPGA and the FPGA can also trigger the HPS. ARM has updated the DS-5 tool
specifically for Altera to enable this SoC FPGA capability to be easily used.

Macnica Americas

Altera SoC Embedded Design Suite Page 6

2 Lab Instructions

2.1 Set-up Host & Target and Launch DS-5
In the scenario presented here the Linux kernel needs to be running on the board, but it can also be

downloaded through the debugger. (We will not do this in this lab.) This scenario uses the pre-built

Helio GHRD Linux image available on RocketBoards and Linux code available from the GIT source. It is

assumed there is a serial connection to the target board and it is verified that the Linux boot process is

complete.

 The Linux kernel executable file needs to be accessible on the host computer. Verify the he

kernel executable for the pre-built Linux image is located at

~/altera/13.1/embedded/embeddedsw/socfpga/prebuilt_images/vmlinux

 The source code corresponding to the kernel running on the board needs to be accessible on the

host computer. The sources for the Linux image can be obtained by extracting the file

downloaded from http://git.rocketboards.org/?p=linux-socfpga.git;a=snapshot;h=socfpga-3.9-

rel;sf=tgz

 In order for the ARM DS-5 to communicate with the target over Ethernet, the target’s IP address

must be known. On the target use the ifconfig utility to either set or verify the target’s IP

address.

 The DS-5 Remote System Explorer uses secure communications with the target via SSH. The

default Linux kernel does not have a password set for the root user. Use the passwd utility on

the host to set a root password of your choice.

 Included in the SoC EDS install is an Embedded Command Shell that sets up the environment so

that the DS-5 can access utilities directly without hard-coded paths. Launch the

Embedded_Command_shell.bat batch file (or embedded_command_shell.sh in Linux) from

~/altera/13.1/embedded

 Launch the ARM DS-5 Altera Edition from within the shell, eclipse &, and select a workspace of

your choosing.

 Hints:

o Extracted Linux source

http://git.rocketboards.org/?p=linux-socfpga.git;a=snapshot;h=socfpga-3.9-rel;sf=tgz
http://git.rocketboards.org/?p=linux-socfpga.git;a=snapshot;h=socfpga-3.9-rel;sf=tgz

Macnica Americas

Altera SoC Embedded Design Suite Page 7

o IP address set on target Linux kernel

o Launch Embedded Command Shell and ARM DS-5

Macnica Americas

Altera SoC Embedded Design Suite Page 8

o Select a DS-5 Workspace

2.2 Connect to Remote Target

 Each Eclipse Workspace is comprised of many window Views and Perspectives. Open the

Remote System Explorer perspective and create a new Connection.

 The RSE connection will be to the running Linux system at the Host Name (i.e. IP address from

previous step). Give the connection a name of your choosing.

Macnica Americas

Altera SoC Embedded Design Suite Page 9

 As mentioned earlier, the DS-5 will connect to the target using SSH protocols and therefore you

will need to modify the default Linux target type of file transfer from ftp.files to ssh.files.

 Connect to the remote system and enter the root username and password you define in the

previous step. The RSA security warning can be safely ignored.

 Once a connection has been established, expand the Root file system tree view to explore the

root file system that is on the active target.

 The DS-5 also has the capability to initiate an Ssh Terminal session to the remote target. Once

the terminal session is open, feel free to explore the running Linux kernel.

 Hints:

o Open Remote System Explorer Perspective

o Establish Ethernet connection to remote target using IP address

ftp://ftp.files/

Macnica Americas

Altera SoC Embedded Design Suite Page 10

Macnica Americas

Altera SoC Embedded Design Suite Page 11

o Connect to remote target and explore root file system.

Macnica Americas

Altera SoC Embedded Design Suite Page 12

Macnica Americas

Altera SoC Embedded Design Suite Page 13

o Launch Terminal session from within DS-5

2.3 Import Linux Application
When the SoC EDS was installed, a group of example DS-5 software projects were also included. The

DS-5 Eclipse environment has the capability of directly importing existing projects that have been

archived.

 Import the ~\altera\13.1\embedded\examples\software\Altera-SoCFPGA-HelloWorld-Linux-

GNU.tar.gz into your workspace.

 The imported project is complete and only needs to be built. Build Project and make note of

the newly generated executable application.

 Hints:

o Import existing project into Workspace

Macnica Americas

Altera SoC Embedded Design Suite Page 14

Macnica Americas

Altera SoC Embedded Design Suite Page 15

o Be sure to select the Select archive file option

Macnica Americas

Altera SoC Embedded Design Suite Page 16

2.4 Debug Linux Application
Now that the application is built providing an executable, a configuration needs to be created that will

download the application over Ethernet, launch the debug session and turn execution control over to

the user.

 Create a Debug Configuration and give the debug configuration a Name of your choosing.

 In the Connection options window, select the target SoC and configure the DS-5 to Download

and debug application and ensure that the RSE connection selects the remote system as set up

in the first section.

 The debug configuration will also need to know the Files necessary to download. This will be

the executable file that was built in the previous step that can be found in your Workspace.

 In order for the download to happen, DS-5 needs to be told where the Target download

directory and Target working directory are. Set these to the target’s root home directory.

 Establish the Debug connection to the target to initiate the application download and halt the

processor at main(). You now have control to step the processor, look at registers, variables,

etc. The STDIO will be presented in the App Console window.

 When finished debugging the application, be sure to Disconnect from target so that additional

debug sessions can be initiated.

 Hints:

o Create a new Debug Configuration

Macnica Americas

Altera SoC Embedded Design Suite Page 17

o Select correct SoC device and target connection

Macnica Americas

Altera SoC Embedded Design Suite Page 18

o Specify the application to download and target directories

Macnica Americas

Altera SoC Embedded Design Suite Page 19

o Start debug session to download to target and halt processor

Macnica Americas

Altera SoC Embedded Design Suite Page 20

o Control execution through step and next buttons. Explore the system environment.

o Be sure to Disconnect from target when done

2.5 Debug Running Linux Kernel
The pre-built Linux kernel that is running on the target has the ability to be debugged. DS-5 for Altera

has been designed such that a debug connection can be established using the USB Blaster-II that is built

into the Helio evaluation board.

 Create a new Debug Configuration and select a target connection to debug the Linux Kernel

and/or Device Driver using the USB-Blaster option. It may be necessary to Browse for the

connection to find the Helio on localhost [USB-1] debug hardware.

Macnica Americas

Altera SoC Embedded Design Suite Page 21

 Since the kernel is already running there is no need to tell the debugger which executable files

to download to the target. However, the debugger does need access to the symbols that are in

the running kernel. It will be necessary to interrupt the processor with debugger commands

once a connection is established and

 add-symbol-file ~\13.1\embedded\embeddedsw\socfpga\prebuilt_images\vmlinux

 It is also necessary to tell the debugger where the Source search directory is located. This is the

location of the extracted source in the first step of this lab.

 It may take several seconds for the debugger to connect to the target, download the symbol file

and gain access to the environment of the running kernel. (If there are red error messages in

the console window referring to System ID mismatches, they can be safely ignored.) Once DS-5

has kernel awareness, feel free to poke around and look at the Active Threads for each A9

processor. Look at the Variables, Registers, Functions, etc.

 When finished debugging the kernel, be sure to Disconnect from target so that additional debug

sessions can be initiated.

 Hints:

o Create a new Debug Configuration to debug the kernel.

Macnica Americas

Altera SoC Embedded Design Suite Page 22

o Select the Debug Cortex-A9x2 SMP via Altera USB-Blaster under the Linux Kernel and/or

Device Driver Debug tree.

o Locate and select the “Helio on localhost [USB-1]”

o On the Debugger tab, select the option to Connect only

o Select the option to Execute Debugger commands and enter the following

 interrupt

 add-symbol-file D:\Altera\Tools\13.1\embedded\embeddedsw

\socfpga\prebuilt_images\vmlinux

(Your path may be different)

o Use the pull-down menu to select the Source search directory for the pre-built kernel

Macnica Americas

Altera SoC Embedded Design Suite Page 23

 E:\source\linux-socfpga-socfpga-3.9-rel-ed01b8c

(Your path may be different)

o Click Debug to connect to target and gain access to the kernel

o Explore the Debug Perspective

Macnica Americas

Altera SoC Embedded Design Suite Page 24

o Variables window

o Registers window

Macnica Americas

Altera SoC Embedded Design Suite Page 25

o Functions window

o Active Threads

o Be sure to Disconnect from target when done

Macnica Americas

Altera SoC Embedded Design Suite Page 26

2.6 View Peripheral Registers
DS-5 Altera Edition has the ability to see all peripheral registers; HPS AND FPGA based user defined IP

registers. After a complete hardware build is finished via Quartus-II, a soc_system folder is generated

that contains the IP register descriptions, system.svd.

 Modify the kernel debug configuration from the previous step to Add peripheral description

files from directory as stated above.

 Launch the Debug session again and notice the new Peripheral tree in the Registers window.

Explore the tree to see not only the HPS peripheral registers, but also the FPGA based peripheral

registers at the bottom of the list.

 Locate the LED PIO FPGA based peripheral and change the DATA value to observe the effect on

the LEDs on the Helio board.

 When finished debugging the kernel, be sure to Disconnect from target so that additional debug

sessions can be initiated.

 Hints:

o Modify existing Kernel Debug Configuration

Macnica Americas

Altera SoC Embedded Design Suite Page 27

o Add the location of the svd file:

D:\Altera\Tools\13.1\embedded\examples\hardware\cv_soc_devkit_ghrd\soc_system

\synthesis

(Your path may be different)

o Initiate debug session

o HPS peripheral registers

Macnica Americas

Altera SoC Embedded Design Suite Page 28

o FPGA peripheral registers

o Disconnect from target

2.7 Trace Linux Kernel execution
This section presents an example of program trace using the Program Trace Macrocell (PTM) and storing

the trace information in memory using ETR. The trace scenario presented here uses Linux kernel

debugging as an example, but any application can be traced in the same way. As shown, the tracing can

be selected to show current core, a particular core, or follow the currently executing thread.

 Modify the kernel debug configuration from the previous step and Edit the Debug and Trace

Service Layer (DTSL).

 Select the System Memory Trace Buffer (ETR) to capture the trace information in a section of

the system memory on the target. Notice that FPGA On-Chip Memory may also be used to store

trace data if accessible by the HPS.

 Enable the Cortex-A9 to use core trace. We will be allowing tracing of both processors and the

trace will have timestamps associated with it.

 Configure the ETR such that it will not interfere with other data in the system memory.

(Defaults are fine here.)

 Before launching a new debug session, be sure to open a new Trace window view.

Macnica Americas

Altera SoC Embedded Design Suite Page 29

 Once the debugger is accessing the kernel, allow the debugger to Continue for a few seconds to

populate the trace buffer. Pause the debugger and the trace window will populate.

 Use the mouse to move around in the trace window and observe the correlation to the

disassembly code in the window below.

 Explore selecting different threads and the effect on the trace output.

 Hints:

o Modify existing Kernel Debug Configuration

o Click Edit on the Connection tab to open the DTSL Configuration Editor

Macnica Americas

Altera SoC Embedded Design Suite Page 30

o On the Trace Buffer tab, select the System Memory Trace Buffer (ETR)’

o On the Cortex-A9 tab, enable the trace capability by checking the Enable ortex-A9 core

trace box.

Macnica Americas

Altera SoC Embedded Design Suite Page 31

o On the ETR tab, check the Configure the system memory trace buffer box. The default

values here are a safe location and size that will not interfere with the running kernel.

Macnica Americas

Altera SoC Embedded Design Suite Page 32

o Open a new Trace window

o Before starting the debug session, press the warm-reset button, SW6, to reload the

kernel into a known good state Allow to boot to login prompt. It may be in the weeds

depending on how you disconnected one of the previous debug sessions.

o Start the debug session and once connected, select Continue and allow the system to run

for a few seconds to populate the trace buffer.

Macnica Americas

Altera SoC Embedded Design Suite Page 33

o Pause the debugger and allow the trace buffers to be uploaded and populate the trace

window.

2.8 Enable Cross-Triggering
Finding out whether a complex problem is caused by a hardware or software bug is normally the first
step towards a fix. The main methodologies for debugging across the hardware and software worlds
consist of:

 Triggering on an error condition in the software, and analyzing the state of the hardware around
that point in time.

 Triggering on an error condition in the hardware, and exploring what the software was doing
around that point in time.

Macnica Americas

Altera SoC Embedded Design Suite Page 34

 Visualizing a history of software instructions and hardware RTL waveforms, and aligning them
on events of interest in order to explore the relationship between the two.

Each of these methodologies requires dedicated debug hardware on the boundary between the
hardened processor system and the FPGA fabric. Altera SoCs include a comprehensive implementation
of ARM CoreSight on-chip debug and trace logic, including a cross-trigger matrix that connects input and
output triggers from all the processors and trace macrocells in the processor sub-system and hardware
triggers to and from the FPGA fabric. The cross-trigger matrix can be easily programmed from the DS-5
Debugger to configure which hardware blocks generate triggers and which components are affected by
them.

It is necessary to have the FPGA programmed with the example design for the Helio board which
includes the FPGA LED design instrumented with SignalTap. You will need to program the FPGA
configuration PROM that is on the bottom side of the Helio board such that on board power-up, the
FPGA will be configured. (Alternatively, if you are familiar with programming Altera devices, you can
program the FPGA directly with the helio_ct.sof file and skip programming the EPCQ as directed below.)

2.8.1 Program the FPGA or EPCQ PROM
It is necessary to have the FPGA programmed with the hardware design that includes the SignalTap II

modules used for cross triggering. The helio_ct.jic file can be used to program the EPCQ PROM and can

be found in the resources folder included with this lab manual. Following are the steps necessary to

program the EPCQ. Alternatively, if you are familiar with programming just the FPGA, use the

helio_ct.sof included the resources folder.

 Connect a USB cable to the BLASTER USB port on the Helio board.

 Launch the Quartus II Programmer

o Linux: ~\quartus\bin\quartus_pgmw

o Windows: ~\altera\13.1\quartus\bin64\quartus_pgmw.exe

 Auto Detect the chain and select the 5CSXFC6C6ES device.

 Right click on the FPGA device and chose Change File and select the helio_ct.jic file.

 Check the box to Program/Configure the EPCQ256 device. The FPGA will automatically be

selected as well.

Macnica Americas

Altera SoC Embedded Design Suite Page 35

 Ensure the Cyclone V SoC Base Board [USB-1] connection is visible in the Hardware Setup

dialog box. If not, click the button and select the cable. (Drivers must be previously installed.

See the Altera web site for instructions.)

 Click Start to initiate the programming of the EPCQ PROM. Programming the EPCQ will take

several minutes.

 Upon successful programming, power-cycle the board and observe the 4 LEDs cycling near the

power input jack.

2.8.2 Enable cross-triggering
In order for the ETM to generate HPS to FPGA trigger out conditions as well as receive FPGA to HPS

triggers in, you must enable the DTSL option as such.

 Modify the kernel debug configuration from the previous step and Edit the Debug and Trace

Service Layer (DTSL).

 Enable cross triggering in both directions and assume the triggers are accessible.

Macnica Americas

Altera SoC Embedded Design Suite Page 36

 Hints:

o Modify existing Kernel Debug Configuration

o Click Edit on the Connection tab to open the DTSL Configuration Editor

Macnica Americas

Altera SoC Embedded Design Suite Page 37

o On the Cross Trigger tab, select Enable FPGA -> HPS Cross Trigger, select Enable HPS ->

FPGA Cross Trigger and select Assume Cross Triggers can be accessed

2.8.3 HPS to FPGA cross-triggering
For the HPS to trigger the FPGA based SignalTap system, you will need to allow the software to free run,

enable the SignalTap system to trigger off the HPS generated trigger, then “interrupt” the free running

kernel as if it hit a breakpoint.

 Allow the kernel debug session to free run.

 Launch SignalTap and Open the pre-defined instrumented system with the helio_ct.stp file.

 SignalTap communicates over the same JTAG connection as the DS-5 debugger. Once SignalTap

is up and running make sure you are communicating with the correct JTAG device.

 The pre-defined SignalTap system is setup such that it will trigger on the incoming trigger signal

from the HPS CTI. Activate SignalTap system analysis.

 Pause the actively running kernel debug session to mimic a software breakpoint being hit.

 Both the DS-5 AND SignalTap are triggered and have captured data at the exact point in time

where the break occurred.

Macnica Americas

Altera SoC Embedded Design Suite Page 38

 Hints:

o Start the kernel debug session once again and when connected, select Continue and

allow the system to run.

o Launch SignalTap (Your path may be different)

 Windows: ~\altera\13.0\qprogrammer\bin\quartus_stpw.exe

 Linux: ~/altera-tools/13.0/quartus/bin/quartus_stpw

o Open helio_ct.stp (Located in resources folder for this lab)

Macnica Americas

Altera SoC Embedded Design Suite Page 39

o Select correct Hardware (USB Blaster) and Device

Macnica Americas

Altera SoC Embedded Design Suite Page 40

o Take note of HPS trigger condition (from the SignalTap system viewpoint)

o Run Analysis

o Pause the kernel debug session to mimic breakpoint being hit

Macnica Americas

Altera SoC Embedded Design Suite Page 41

o SignalTap is now triggered and waveforms are captured (nothing really interesting here

other than the fact that the software break triggered SignalTap)

2.8.4 FPGA to HPS cross-triggering
For the FPGA to trigger the HPS you will need to allow the software to free run, enable the SignalTap

system to trigger off an event, a push-button on the Helio board in this case, then “interrupt” the free

running kernel.

 Allow the kernel debug session to free run.

 Modify the SignalTap setup such that there is a Don’t Care for the HPS incoming trigger and the

system will trigger on the falling edge of the push-button input.

Macnica Americas

Altera SoC Embedded Design Suite Page 42

 Activate SignalTap system analysis.

 Press the SW11 push-button on the Helio board to trigger the SignalTap system.

 Both DS-5 AND SignalTap are triggered and have captured data at the where the hardware

trigger occurred.

 Hints:

o Continue the kernel debug session again in DS-5.

o In SignalTap, verify the Lock mode to Allow trigger condition changes only.

o On the Setup tab change the HPS Trigger In Pattern to a Don’t Care.

o Select Falling Edge for …button_pio|in_port[0] (Right-click in Trigger Condition column)

Macnica Americas

Altera SoC Embedded Design Suite Page 43

o Run Analysis

o Press the SW11 push-button (just below 4 illuminated LEDs) to trigger SignalTap

o Waveforms are captured and the debug session in DS-5 is now triggered near the point

the push-button was pressed.

Macnica Americas

Altera SoC Embedded Design Suite Page 44

3 Notes

Macnica Americas

Altera SoC Embedded Design Suite Page 45

Document Revision History

Revision Date Comments

0.1 May 8, 2013 Initial Draft

0.3 May 24, 2013 Internal Review

1.0 May 29, 2013 Initial Release

2.0 March 18, 2014 Updated to 13.1 tools

