
Macnica Americas

Adding and Simulating Custom SoC Peripherals Page 1

Adding and Simulating
Custom SoC Peripherals

Version 2.0

March 17, 2014

Corporate HQ & Design Center
380 Stevens Ave. Suite 206

Solana Beach, CA 92075
http://www.macnica-na.com

http://www.macnica-na.com/

Macnica Americas

Adding and Simulating Custom SoC Peripherals Page 2

About Macnica Americas
Macnica Americas is a franchised semiconductor distributor for multiple, high-tech suppliers within

North America. Our business model emphasizes unsurpassed technical support and knowledge versus

other distribution options at no cost premium. Macnica Americas is the North American based division

of Macnica Inc., a $2.4B global leader in semiconductor distribution. We maintain a field support staff

as well as centralized design & applications teams.

Optional design services are headquartered in San Diego, CA., USA and offer partial or full turnkey

design of FPGAs, power distribution networks, and full PCB design. Our expertise includes all aspects of

high speed communications protocols and networking, video broadcast, signal processing, and storage

applications. Macnica’s specialty is high density, high speed complex FPGA designs utilizing multiple IP

cores with fast time to market requirements.

Macnica can help you deliver a winning project with the unique combination of technical support,

custom IP, and design services. Setup a meeting today!

http://www.macnica-na.com/web/americas/home

License and Terms of Use
This lab with its associated source code and support files, are being provided on an "as-is" basis and as

an accommodation. Therefore all warranties, representations or guarantees of any kind (whether

express, implied or statutory) including, without limitation, warranties of merchantability, non-

infringement, or fitness for a particular purpose, are specifically disclaimed.

This source code may only be used in an Altera programmable logic device and may not be distributed

without permission from Macnica Americas, Inc. It is provided free of royalties or fees of any kind.

http://www.macnica-na.com/web/americas/home

Macnica Americas

Adding and Simulating Custom SoC Peripherals Page 3

Table of Contents
About Macnica Americas .. 2

License and Terms of Use ... 2

1 Lab Overview... 4

1.1 Introduction and Goals ... 4

1.2 Hardware and Software Requirements .. 4

1.3 Assistance .. 4

1.4 Lab Agenda and Milestones .. 5

2 Lab Instructions ... 6

2.1 Custom Component Creation ... 6

2.2 Component Editor Basics .. 11

2.3 BFM Simulation ... 13

2.4 Project Integration .. 19

2.5 Interaction and Verification .. 21

3 Notes ... 22

Document Revision History ... 23

Macnica Americas

Adding and Simulating Custom SoC Peripherals Page 4

1 Lab Overview

1.1 Introduction and Goals
This lab is designed as a self-paced-learning tool for basic Altera SoC hardware development. In

reaching this goal, only a relatively small subset of SoC features, peripherals, and options are explored.

It is highly recommended persons attend additional training, such as that offered by Altera directly, for

more detailed education on this rather complex flow and device family:

http://www.altera.com/education/training/curriculum/soc/trn-soc.html

The lab is broken into a series of major sections or milestones representing the common phases of

design with the Altera SoC product. Unlike other trainings you may have had, this lab does not explicitly

indicate every button to push in explicit order. Instead, your goal is described with the necessary

information given with exact steps left to the user. If you are having problems, each section concludes

with a series of hints related to the tasks proposed. In the event you are still unable to achieve the

desired functionality, or you simply wish to double-check your progress, a completed project has been

provided with the lab materials in the /SoC_3_lab/solution folder.

A minimal working knowledge of Quartus is expected. For someone completely new to the Altera FGPA

development tools, it is suggested they complete tutorials integrated within Quartus under the Help pull-

down menu prior to starting this lab.

All HDL is coded in Verilog HDL, but the logic is so basic VHDL users should not find this at all a limitation

in their experience.

1.2 Hardware and Software Requirements
Review vWorkshops_Getting_Started.pdf document for a detailed reference on installing the necessary

software and burning the microSD card per following requirement list:

 Macnica Helio SoC Evaluation board w/micro-USB cable

 Quartus 13.1 installed local machine

 ModelSim-ASE 10.1d (Included in Quartus 13.1 installer)

 microSD card loaded with Helio image as documented vWorkshops_Getting_Started.pdf

1.3 Assistance
A dedicated e-mail account has been setup to receive support requests for the vWorkshop series.

Please identify the course (in this case: SoC 3 Adding and Simulating Custom SoC Peripherals) in addition

to details on the question. workshophelp@macnica.com

http://www.altera.com/education/training/curriculum/soc/trn-soc.html
https://macnica.box.com/shared/static/1st88mycwz05k7xej18r.pdf
https://macnica.box.com/shared/static/1st88mycwz05k7xej18r.pdf
mailto:workshophelp@macnica.com

Macnica Americas

Adding and Simulating Custom SoC Peripherals Page 5

1.4 Lab Agenda and Milestones
Below is a listing of the lab agenda and milestones.

Custom Peripheral Creation

Given source code for a rudimentary PWM led driver, you will use the Qsys Component Editor to create

a custom component and make it available in the component library of Qsys.

Component Editor Basics

Get just beyond the basics of the Component Editor. You will modify the critical <component>_hw.tcl

file directly and add a parameterized feature.

BFM Simulation

Using Altera’s BFMs in Qsys, you will create a test system for simulation of your custom component in

order to verify its operation. Due to limitations of time and scope, a simplified “user test program”

driving these BFMs is provided – you can modify it for more features or functions such as automated

checking at your leisure.

Project Integration

The custom component will then be integrated into our simple SoC Quartus project from the Basic

Altera SoC HPS Usage training and compiled. This will require some minor edits to the project files and

assignments.

Interaction and Verification

Finally, you will load the compiled design into the FPGA, and use SystemConsole to interact and verify

functionality of the custom component in hardware.

Macnica Americas

Adding and Simulating Custom SoC Peripherals Page 6

2 Lab Instructions

 We will be using the same folder structure and contents as that used in the prior lab (graphic

below). If you did not complete the Basic Altera SoC HPS Usage lab, use the contents of the

/Soc_3_lab/resources/soc_simple.zip to create this structure and align with the completion of

the SoC 2 Basic Altera SoC HPS Usage lab.

2.1 Custom Component Creation
The HDL source code for a very simple PWM function has been provided for you, but we will need to

define how that source code, specifically its ports, are mapped to the Qsys standard interface and signal

types.

 Create a new folder within ~/soc_simple/source called mypwmled (not shown in graphic

above). Copy the file mypwmled.v from the /SoC_3_lab/resources folder into

/soc_simple/source/mypwmled. This will be the source for our custom component in this lab.

 Review the source file ~/soc_simple/source/mypwmled.v and compare to the simple block

diagram below to familiarize yourself with its operation. This is about as simple a custom

component as could be created for lab purposes – it has a 1 bit address space and a simple

comparison between a running counter and control register to toggle the state of an output

signal and “pwm” a LED. You might notice a parameter purposefully commented out – we will

activate that later.

Macnica Americas

Adding and Simulating Custom SoC Peripherals Page 7

 Launch Quartus and open the project file /soc_simple/soc_simple.qpf. Launch Qsys, but do not

open the qsystem.qsys file as we have done in the past at this time. You will see why this is

important later.

 Double-click New Component in the component library to invoke the Component Editor. Set

mypwmled as both the name and display name for the custom component being created

leaving all else default. On the Files tab, add the source file

/soc_simple/source/mypwmled/mypwmled.v file as the synthesis and simulation source.

Macnica Americas

Adding and Simulating Custom SoC Peripherals Page 8

 Invoke Analyze Synthesis Files on the Files tab. After it completes, look at the resulting

Interfaces tab and Signals tab. Given your knowledge gained in presentation and demo, fill out

the table below and identify what might not “look right.”

Interface Name Signal Type in Interface HDL port name Looks “Right”?

 reset

 read

 write

 address

 readdata

 writedata

 clock

 pwmled

 Correct the interfaces such that you have at least one each of the following interface types: one

Avalon-MM Slave, one Clock Input, one Reset Input, and one Conduit_End. This can be tricky –

the best method is often using the Signals tab to create one or more interfaces of the desired

type. In the graphic below, a new Clock Input interface is being created.

Macnica Americas

Adding and Simulating Custom SoC Peripherals Page 9

 Once an interface exists, you can rename it on the Interfaces tab. The Signal tab shows the

interface name, not necessarily the type. Though newly created interfaces get a descriptive

name by default the name does not matter -- so you can be creative if you wish and I have done

so for purposes of demonstration. Make sure all HDL port names shown are mapped to an

interface and the signal type within that interface matches the function and polarity you can

infer from the HDL port name. Refer to the below picture as a guide. (Note: the conduit signal

type is a bit odd and identified as export)

Macnica Americas

Adding and Simulating Custom SoC Peripherals Page 10

 After the prior steps, you might have “left over” interfaces on your Interfaces tab with no HDL

signals/HDL ports assigned. There is a convenient button Remove Interfaces with No Signals on

the Interfaces tab just for this purpose.

 Finally, most interface types (for example, an Avalon-mm slave) require association with a clock

and reset signal. This is done on the Interfaces tab you should have error messages regarding

them missing. Assign the correct clock and reset to the Avalon slave, reset and conduit

interfaces. There should no remaining errors in the status window when complete.

 Aside from association with a clock and reset, you will not need to change any other component

properties for interfaces from their defaults (for example, words-vs-byte transfers, timing,

pipelining, etc). Just be aware that, for a more complex component, you do have access to such

parameters to match the functionality of the HDL.

 Close and save your component a final time. Your custom component now appears in the

component library. Close Qsys.

Macnica Americas

Adding and Simulating Custom SoC Peripherals Page 11

Hints: Custom Component Creation

 The Interfaces tab can be made more manageable by minimizing the detail properties expanded

by default. When minimized, you see just the interface name and type.

 Upon first analysis of the HDL, the component editor incorrectly creates two interfaces of type

Reset Input and no interface of type Clock Input. It also doesn’t know what to do with our

design-specific output port pwmled, so it incorrectly associates it with the Avalon-MM Slave

interface called avalon_slave_0. These are the errors we need to correct.

 When saved, your component will appear in the Project area of the component library because

we did not give it a folder/subfolder name for filing within the Library.

 To edit your saved component, you can use the right-click menu with the component

selected.....double-click adds the component to your system and single-click just highlights. You

can also use the Edit button at the bottom of the Component Library.

2.2 Component Editor Basics
Now we will look at the output of the Component Editor and understand how this file interacts with the

Qsys component library and HDL source code. We will also enhance our component with the addition of

a parameter that can be configured when instanced in a system.

 Locate the mypwmled_hw.tcl – this is the output file of the Component Editor created when

you hit Finish and save. Notice that it is not in the same folder as the source code. This is a bit

undesirable – the location is a result of the “path focus” Qsys had when we invoked the

Macnica Americas

Adding and Simulating Custom SoC Peripherals Page 12

Component Editor. Specifically, we had no Qsys system open so our “focus” was in the default

project directory. Move (don’t copy/paste) mypwmled_hw.tcl to the

soc_simple/source/mypwmled folder so it is in the same location as its source. Launch Qsys (or

do a System Refresh via the File pull-down menu if you never closed it). Do you see a change in

the availability of your new component in the library? Do you know why?

 Add the new location of the mypwmled_hw.tcl file to the Qsys search path via Options under

the Tools pull-down menu in Qsys. Be sure to hit Finish and not just close the window or your

changes will not take effect. A refresh of the library occurs automatically. Is the new

component available in the library now? What happens if you try to edit the component again?

(Close the component without saving when you do this!). Any theories based on the error

message? (Try viewing the contents of mypwmled_hw.tcl in a text editor to try and identify the

problem).

 It will take two simple edits of the mypwmled_hw.tcl file for it to operate properly in its new

location. After edit, you must perform a System Refresh for this file to be re-parsed. Try to fix

things and return expected to proper operation – refer to tips if necessary.

 Now edit the mypwmled.v file and, per the picture below, make a total of three changes to

comment/uncomment the declaration of scratchreg_reset and its use to set the value of

scratch_reg on a reset. In Qsys, open the mypwmled component for editing and reanalyze the

source files to bring in this change. Notice the change on the Parameters tab of the Component

Editor. Click Preview the GUI to preview what a user will see adding this component to their

system. Click Finish and save this change to the component which will create a new version of

mypwmled_hw.tcl. Review the impact of adding this parameter to the mypwmled_hw.tcl with

your favorite text editor.

Macnica Americas

Adding and Simulating Custom SoC Peripherals Page 13

Hints: Component Editor Basics++

 After moving the file mypwmled_hw.tcl, it is no longer in the default search path of Qsys (refer

to presentation on paths searched by default). Qsys rebuilds the component library on launch or

after a manual refresh, so the component disappears from the library until we include its new

location into the search path.

 After the search path is fixed, the paths to mypwmled.v defined in mypwmled_hw.tcl itself need

to be updated. Without correction, Qsys locates the component and populates it into the library,

but gives errors when we try to edit the file (or if we were to try and generate the system).

Delete the leading source/mypwmled from mypwmled_hw.tcl in two places which are no longer

necessary with the .v file now in the same directory as the _hw.tcl file.

 Because the Component Editor is a bit fickle and requires a fair bit of manual corrections, you are

probably starting to understand why many users begin to just create/edit <component>_hw.tcl

files directly. The syntax is relatively straightforward and well defined in documentation:

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf

 Advanced users can do much more than enable simple parameters. Refer to Altera

documentation for tcl-function callback support such as data-entry validation and more.

2.3 BFM Simulation
We will now use Qsys to create a BFM-based test bench for our component so that we can verify its

functionality in a simulation software package. Since we are using a standardized interface, it is typically

sufficient (and certainly much faster) to simulate our component alone with BFM modeling of its

connections into a system rather than simulating all system components fully and simultaneously.

 Create a folder /bfmsim inside /soc_simple/source/mypwmled. Invoke Qsys, create a “new”

system, and save it as dut.qsys in the folder /soc_simple/source/mypwmled/bfmsim. Delete

the default clock component present and add the mypwmled component to the system. (You

are prompted by your previewed GUI for the scratchreg_reset parameter value. Enter

something memorable and take note for later comparison). Now export all signals with their

default names by double-clicking in the Export column. See graphic below for this step

completed – and at the hints section if your attempt looks wildly different and you can’t figure

out why!

 Use the Generation pull-down menu and set options to Create a Testbench Qsys System =

Standard, BFMs for standard Qsys interfaces in Verilog. (We can also disable generation of files

for synthesis by selecting None in that section to save time; we are doing sim only for this

system and not synthesizing the design to put in to the FPGA itself). You might also notice the

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf

Macnica Americas

Adding and Simulating Custom SoC Peripherals Page 14

output directories identified – we are accepting the defaults. Press Generate to create the

output files selected.

 Generation creates a new Qsys file called dut_tb.qsys. Locate, open and examine the contents

of this system with Qsys. Notice that our original system of single component under test

(dut.qsys) is instanced in this new system (dut_tb.qsys). This is an example of a Qsys system

instancing another Qsys system – neat! Notice also the component called dut_inst has the

appropriate Altera BFM components instanced and connected on each of its interfaces. Below

is a simplified picture from the presentation slides of this test bench system. (Aside: we could

have achieved the same result by manually instancing and connecting the appropriate BFMs in

the original system dut.qsys, but this also requires manually configuring many parameters of

each BFM component to match the mode used. Having Qsys generate the test bench system for

us does this “automagically”!).

Macnica Americas

Adding and Simulating Custom SoC Peripherals Page 15

 Now generate the simulation model of the test bench system. Using the Generation pull-down

menu option of the dut_tb.qsys system select Verilog as a simulation model and disable

Synthesis and Testbench per the below screenshot (the latter two not actually necessary, but

speeds up generation since we are using this system for simulation purposes only).

 The generated simulation model creates a compilation script for most popular simulators (Aldec,

Cadence, Mentor, Synopsys). We will use the provided Mentor compilation script as a base and

tweak it just slightly. Specifically, edit

/bfmsim/dut/testbench/dut_tb/simulation/mentor/msim_setup.tcl so that all design files (not

Macnica Americas

Adding and Simulating Custom SoC Peripherals Page 16

device library files) compile into the same working library called work. The below image shows

the necessary edit. (Caution: if you regenerate the testbench your edits here will be overwritten,

but it is unusual to repeatedly generate the testbench).

 We must now have a test program that interacts with the BFMs of the dut_tb.qsys using their

API calls. People make careers out of verification and creating a robust test program with

automated checking is well beyond the scope of this lab ... but an ultra-simple test program has

been provided for you. Create the folder /source inside

/soc_simple/source/mypwmled/bfmsim. Copy test_program.sv into this folder from

SoC_3_lab/resource. Review the copied file in a text editor; you should be able to follow its

basic operation using the comments provided.

 Next, we need a single top-level file that instances both our test program test_program.sv and

the testbench dut_tb.qsys. This is a very, very simple task...but to prevent typos a top-level has

been created for you. Copy top.v from the folder /SoC_3_lab/resource folder into

/mypwmled/bfmsim/source. Review the file contents to fully comprehend its simplicity.

 Lastly, we will use a short, custom tcl script to execute our simulation from the ModelSim

prompt. Copy run_sim.tcl from /SoC_3_lab/resource folder into

/soc_simple/source/mypwmled/bfmsim/source and review its contents. It is largely calling

macros defined by the Qsys compilation script msim_setup.tcl to compile the tb_dut.qsys

simulation files generated prior.

 Invoke ModelSim-ASE and change-directory to /soc_simple/source/mypwmled/bfmsim/source

which is where the sim execution script run_sim.tcl was placed. Source this execution script

with the command do run_sim.tcl at the ModelSim prompt.

Macnica Americas

Adding and Simulating Custom SoC Peripherals Page 17

 You should see compilation messages scroll by and then the simulation run. In the waveform

window, select all signal names and use the right-click menu to change their radix to hex for

easier reading (they are binary by default). You will probably want to zoom in/out as well.....but

you should be able to identify your custom scratch register reset value and the response of the

custom component to the writes and reads defined in the file test_program.sv.

Macnica Americas

Adding and Simulating Custom SoC Peripherals Page 18

 View the transcript window and take note of the messaging from the BFM models. The amount

of information output is controlled by the verbosity setting applied in the user test program

test_program.sv.

Hints: BFM Simulation

 When creating your test bench system and adding your component, if you don’t see all your

component interfaces for export it is most likely because you still have an interconnect filter

applied. For example, you could be hiding Clock and Reset interface types. Apply the

interconnect filter Default to resolve.

 The Qsys interface names match the naming made with the component editor. In the project

solution and screenshots I call attention to this by including “larry, moe, curly, and shemp” in my

interface naming during component creation. The order of the interfaces in the GUI also

depends on their definition order in the myledpwm_hw.tcl file. Your component may be

Macnica Americas

Adding and Simulating Custom SoC Peripherals Page 19

published with different interface naming or interface order. As long as the interface number

and types are the same, the order or name themselves do not matter and just impact system

readability.

 When editing msim_setup.tcl there is a device_library_files section and design_files section.

Only edit the design_files section with the library –work work modification.

 If you used your own naming convention for the interfaces, you will need to modify the

test_program.sv file to reflect those names. Lines 15 -17.

 ModelSim-ASE (Altera Starter Edition) requires no license. This is a separate simulation tool by

3rd party (Mentor) and separate from Quartus though Altera distributes/provides the install files.

You can get a comparison of ModelSim-ASE to other variants here:

http://www.altera.com/products/software/quartus-ii/modelsim/qts-modelsim-index.html

2.4 Project Integration
We will now bring the custom component into our simple SoC system. Since we are limited in the

number of LEDs available, we will rob the most significant led bit (LED3) from GPIO control and instead

drive it with the new custom component mypwmled.

 Open the qsystem.qsys file located in soc_simple/source/qsys system which was the focus of

the previous lab. (Don’t forget you can use your interconnect filters to simplify the system

view). Add the mypwmled component and accept the default component name. Make

connections from this component into the system using the info in below table and graphic:

Component
Name

scratchreg_on
_reset

Avalon-MM slave
interface

Clock Interface Reset Interface Conduit Interface

mypwmled_0 something
memorable

Same as
button_pio
components

Same as
button_pio
components

Same as
button_pio
components

Export as pwm_out
(not the default)

 Edit the base address for the mypwmled component to be 0x000100C0 which is important to

note for our peeking/poking later.

 Use the Generate pull-down menu to create the HDL Example and confirm that there is now a

top level HDL connection called pwm_out_export. This didn’t exist prior, so we’ll need to

update our top-level Quartus project soon.

http://www.altera.com/products/software/quartus-ii/modelsim/qts-modelsim-index.html

Macnica Americas

Adding and Simulating Custom SoC Peripherals Page 20

 You should have no errors identified in the message window. Use the Generate pull-down

menu to enable Verilog output in the Synthesis section. Simulation and Testbench generation

can be disabled to save time. Click Generate, saving the system if necessary. Hopefully you

have no errors!

 Edit the soc_simple.v file located in /soc_simple/source/rtl to add the new output pwm_out to

both the top-level port list and the instance of the Qsys system. We will also reduce the top-

level fpga_led bus from 3 to 2 bits. For those unfamiliar with Verilog, use the below pictures as

a guide. Don’t forget the trailing comma modification circled.

 We now need to assign this new output to a pin. Launch the Assignment Editor (under the

Assignments pull-down menu in Quartus) and sort by name. Find the location assignment for

fpga_led[3] which is currently to PIN_AC4. Edit the name from fpga_led[3] to pwm_out. This

pin/led will now be driven by our new mypwmled component instead of the led_pio

component. We’ll leave this bit of the led_pio dangling – it won’t harm anything.

 Perform a full compilation of the project. Verify that a new soc_simple.sof file was created by

viewing its timestamp. In the compilation report notice that the Timequest section is now red –

we’ll ignore for purposes of this lab, but do you know why?

Hints: Project Integration

 Revert your interconnection filter to Default at least once to view all connections

 We don’t use the default export name for the mypwmled conduit because everyone may have

named the interface differently in component generation -- this impacts default naming.

 Astute students will notice we didn’t make an I/O voltage assignment to pwm_out. The project

is set to have 2.5V be the default unless otherwise specified....we’re relying on that.

Macnica Americas

Adding and Simulating Custom SoC Peripherals Page 21

 Timequest shows red because not all I/O are fully constrained. Specifically, we did not make any

timing assignments for the new pwm_out port. This will function because this output is largely

static. We would make assignments to remove this path from timing analysis to resolve the

error.

2.5 Interaction and Verification
Now let’s use SystemConsole as we did in SoC 2 lab to peek/poke our system and verify operation of our

new component hardware at location.

 This is largely a repeat of the previous lab with the added bit of detail that our custom

component is at location 0x000100C0 and a memory space of two 32-bit words.

 Perform a 32bit peek to address 0x000100C4. This is the scratch register. Does its value match

your expectations?

 Now do a poke to address 0x000100C0 of 0x02FAF080 and observe LED3. Any idea on why this

value specifically? (What is it in decimal, what frequency is our myledpwm component

operating, and why is this significant? Maybe look again at the myledpwm.v source file....)

Hints: Interaction and Verification

 If you haven’t completed the previous lab, you can probably get good results by following the

screenshot above.....but you should refer to that lab for more detail.

 SystemConsole (as a master) uses byte-addressing even though the slave is only lone address bit

(word addressed). This is why our addressing isn’t 0x000100C0 and 0x000100C1 when

peeking/poking from SystemConsole.

 Remember we used a parameter for the reset value of the scratch register that could be user-

edited using the Qsys GUI. You should be reading your custom value here.

 0x02FAF080 is 50M in decimal which is also the clock frequency driving the comparison counter.

To get a 1sec LED toggle, we want the comparison counter equal to the operating frequency.

You might try writing in a value in 2x or 4x to get a slower flash.

Macnica Americas

Adding and Simulating Custom SoC Peripherals Page 22

3 Notes

Macnica Americas

Adding and Simulating Custom SoC Peripherals Page 23

Document Revision History

Revision Date Comments

0.1 May 8, 2013 Initial Draft

0.2 May 27, 2013 Internal Review

1.0 May 29, 2013 Customer Release

2.0 March 17, 2014 Updated to Q-II 13.1

