Macnica Americas

Solutions by Macnica Group

MACNICA

AMERICAS

Adding and Simulating
Custom SoC Peripherals

Version 2.0

March 17, 2014

Corporate HQ & Design Center
380 Stevens Ave. Suite 206
Solana Beach, CA 92075
http://www.macnica-na.com

Adding and Simulating Custom SoC Peripherals Page 1

http://www.macnica-na.com/

Macnica Americas

About Macnica Americas

Macnica Americas is a franchised semiconductor distributor for multiple, high-tech suppliers within
North America. Our business model emphasizes unsurpassed technical support and knowledge versus
other distribution options at no cost premium. Macnica Americas is the North American based division
of Macnica Inc., a $2.4B global leader in semiconductor distribution. We maintain a field support staff
as well as centralized design & applications teams.

Optional design services are headquartered in San Diego, CA., USA and offer partial or full turnkey
design of FPGAs, power distribution networks, and full PCB design. Our expertise includes all aspects of
high speed communications protocols and networking, video broadcast, signal processing, and storage
applications. Macnica’s specialty is high density, high speed complex FPGA designs utilizing multiple IP
cores with fast time to market requirements.

Macnica can help you deliver a winning project with the unique combination of technical support,
custom IP, and design services. Setup a meeting today!

http://www.macnica-na.com/web/americas/home

License and Terms of Use

This lab with its associated source code and support files, are being provided on an "as-is" basis and as
an accommodation. Therefore all warranties, representations or guarantees of any kind (whether
express, implied or statutory) including, without limitation, warranties of merchantability, non-
infringement, or fitness for a particular purpose, are specifically disclaimed.

This source code may only be used in an Altera programmable logic device and may not be distributed
without permission from Macnica Americas, Inc. It is provided free of royalties or fees of any kind.

Adding and Simulating Custom SoC Peripherals Page 2

http://www.macnica-na.com/web/americas/home

Macnica Americas

Table of Contents
ADOUL IMACNIC AMEIICAS ..eeutieiteeteeteeste ettt ettt ettt sh e st et e b e e bt e s bt e sbeesatesaeeeabe e bt e sbeesaeesaeesmneeabeebeennes 2
LiceNSE @and TEIMS OF USE .cuuiiiiiiiiiieeiiee ettt sttt ettt e ettt sb e st e e st e e sbee e sabeesabeeeaseeesabeeebeeesnseesabeeesaneenn 2
R I o J @ V= oV = T PP P SO TR PRROUPRP 4
11 INErodUCTION AN GOAIS ..oouevieeiiieiee ettt sab e s e e s snt e e sne e e sanas 4
1.2 Hardware and Software REQUIFEMENTScccuiiiiiiiiie ettt e e e eree e e e earae e e e eaneeas 4
13 ASSISTANCE. ...ttt et a e 4
1.4 Lab Agenda and MilESTONESccccciiiieeiiiie ettt e e e st e e e e e e e e et e e e e eabeeeeentaeeeennreeas 5
2 LaD INSEIUCTIONS ... ettt ettt s e e st e st e s bt e e s bt e e be e e s ab e e s baeesabeesabeeeneeesareeennnes 6
2.1 Custom COMPONENT CrEATIONuuiiiiiiiiieiiiiiteee ettt e e e e e ettt e e e e e s s sbbreteeeeessssssssbeaaeeesssssnnnsnes 6
2.2 (0o Tpa] oo o =T o Al o [T gl T] Lol PPPPPPPPN 11
2.3 BFM SIMUIGTION .ttt b e bt st ettt e b e sbeesae e st e et e e b e ennes 13
24 Lo o (=T) = =4 - [0 o N 19
25 Interaction and VerifiCationc.eo ittt et 21
S Lo =3P OPPPPPTTTROPPR 22
DOCUMENT REVISION HISTOIY ..iiiiiiiiiiiiiiieiie ettt e e e s s sttt e e e e e e s sasaabtaaeeeesssnnansreneeeeas 23

Adding and Simulating Custom SoC Peripherals Page 3

Macnica Americas

1 Lab Overview

1.1 Introduction and Goals

This lab is designed as a self-paced-learning tool for basic Altera SoC hardware development. In
reaching this goal, only a relatively small subset of SoC features, peripherals, and options are explored.
It is highly recommended persons attend additional training, such as that offered by Altera directly, for
more detailed education on this rather complex flow and device family:
http://www.altera.com/education/training/curriculum/soc/trn-soc.html

The lab is broken into a series of major sections or milestones representing the common phases of
design with the Altera SoC product. Unlike other trainings you may have had, this lab does not explicitly
indicate every button to push in explicit order. Instead, your goal is described with the necessary
information given with exact steps left to the user. If you are having problems, each section concludes
with a series of hints related to the tasks proposed. In the event you are still unable to achieve the
desired functionality, or you simply wish to double-check your progress, a completed project has been
provided with the lab materials in the /SoC_3_lab/solution folder.

A minimal working knowledge of Quartus is expected. For someone completely new to the Altera FGPA
development tools, it is suggested they complete tutorials integrated within Quartus under the Help pull-
down menu prior to starting this lab.

All HDL is coded in Verilog HDL, but the logic is so basic VHDL users should not find this at all a limitation
in their experience.

1.2 Hardware and Software Requirements
Review vWorkshops Getting Started.pdf document for a detailed reference on installing the necessary
software and burning the microSD card per following requirement list:

e Macnica Helio SoC Evaluation board w/micro-USB cable

e Quartus 13.1 installed local machine

e ModelSim-ASE 10.1d (Included in Quartus 13.1 installer)

e microSD card loaded with Helio image as documented vWorkshops Getting Started.pdf

1.3 Assistance

A dedicated e-mail account has been setup to receive support requests for the viWorkshop series.
Please identify the course (in this case: SoC 3 Adding and Simulating Custom SoC Peripherals) in addition
to details on the question. workshophelp@macnica.com

Adding and Simulating Custom SoC Peripherals Page 4

http://www.altera.com/education/training/curriculum/soc/trn-soc.html
https://macnica.box.com/shared/static/1st88mycwz05k7xej18r.pdf
https://macnica.box.com/shared/static/1st88mycwz05k7xej18r.pdf
mailto:workshophelp@macnica.com

Macnica Americas

1.4 Lab Agenda and Milestones

Below is a listing of the lab agenda and milestones.

Custom Peripheral Creation
Given source code for a rudimentary PWM led driver, you will use the Qsys Component Editor to create
a custom component and make it available in the component library of Qsys.

Component Editor Basics
Get just beyond the basics of the Component Editor. You will modify the critical <component>_hw.tcl

file directly and add a parameterized feature.

BFM Simulation

Using Altera’s BFMs in Qsys, you will create a test system for simulation of your custom component in
order to verify its operation. Due to limitations of time and scope, a simplified “user test program”
driving these BFMs is provided — you can modify it for more features or functions such as automated
checking at your leisure.

Project Integration

The custom component will then be integrated into our simple SoC Quartus project from the Basic
Altera SoC HPS Usage training and compiled. This will require some minor edits to the project files and
assignments.

Interaction and Verification
Finally, you will load the compiled design into the FPGA, and use SystemConsole to interact and verify
functionality of the custom component in hardware.

Adding and Simulating Custom SoC Peripherals Page 5

Macnica Americas

2 Lab Instructions

0O We will be using the same folder structure and contents as that used in the prior lab (graphic
below). If you did not complete the Basic Altera SoC HPS Usage lab, use the contents of the
/Soc_3_lab/resources/soc_simple.zip to create this structure and align with the completion of
the SoC 2 Basic Altera SoC HPS Usage lab.

<quartus install dir>\13.1l\quartus\qgdesigns\ ‘\\\

\
\rtl \scripts
\gsys \sdc

2.1 Custom Component Creation
The HDL source code for a very simple PWM function has been provided for you, but we will need to
define how that source code, specifically its ports, are mapped to the Qsys standard interface and signal

types.

O Create a new folder within ~/soc_simple/source called mypwmled (not shown in graphic
above). Copy the file mypwmled.v from the /SoC_3_lab/resources folder into
/soc_simple/source/mypwmled. This will be the source for our custom component in this lab.

O Review the source file ~/soc_simple/source/mypwmled.v and compare to the simple block
diagram below to familiarize yourself with its operation. This is about as simple a custom
component as could be created for lab purposes — it has a 1 bit address space and a simple
comparison between a running counter and control register to toggle the state of an output
signal and “pwm” a LED. You might notice a parameter purposefully commented out — we will
activate that later.

Adding and Simulating Custom SoC Peripherals Page 6

Macnica Americas

mypwmled

Scratch Reg [31:0]

Control Reg [31:0]

Pwm Counter[31:0]

Avalon-MM
Slave

O Launch Quartus and open the project file /soc_simple/soc_simple.qpf. Launch Qsys, but do not
open the gsystem.qsys file as we have done in the past at this time. You will see why this is

important later.

0 Double-click New Component in the component library to invoke the Component Editor. Set

mypwmled as both the name and display name for the custom component being created

leaving all else default. On the Files tab, add the source file

/soc_simple/source/mypwmled/mypwmled.v file as the synthesis and simulation source.

Adding and Simulating Custom SoC Peripherals

Page 7

Macnica Americas

Lo R T

File Edit Systern Generate View Tools Help

Address Map 22 | Project Settings &3 |

o'y X Conn... Name Description Export

" & Componenttitr_myperied o <

Library File Templates
--Bridges - "
--Bridges and Adapters | ComponentType| Files | Parametersl Sognalsl I.nterfaces| |
[-Clock and Reset + About Files
--Conﬁguraﬁon & Programming
[-DSP _
H Synthesis Files
[+]-Embedded Processors
---Inherface Protocols These files describe this component's implementation, and will be created when a Quartus II synthesis model is generated.
--Memories and Memary Controllers The parameters and signals found in the top-level module will be used for this component's parameters and signals.

[#-Merlin Components
[#-Microcontroller Peripherals
--Peripherals source/mypwmled/mypwmled.v Verilog HDL Top-level File
F-PLL

--sts Interconnect
[#-Verification
[-Window Bridge

Output Path Source File Type Attributes

B Analyze Synthesis Files Create Synthesis File from Signals

Top-level Module: | (Analyze files to select module) ~ |

Verilog Simulation Files

These files will be produced when a Verilog simulation model is generated.

Qutput Path Source File Type Attributes

source/mypwmled/mypwmled.v Verilog HDL

B Copy from Synthesis Files

O Invoke Analyze Synthesis Files on the Files tab. After it completes, look at the resulting
Interfaces tab and Signals tab. Given your knowledge gained in presentation and demo, fill out
the table below and identify what might not “look right.”

Interface Name Signal Type in Interface HDL port name Looks “Right”?
reset

read

write

address

readdata

writedata

clock

pwmled

0 Correct the interfaces such that you have at least one each of the following interface types: one
Avalon-MM Slave, one Clock Input, one Reset Input, and one Conduit_End. This can be tricky —
the best method is often using the Signals tab to create one or more interfaces of the desired
type. In the graphic below, a new Clock Input interface is being created.

Adding and Simulating Custom SoC Peripherals Page 8

Macnica Americas

File Temnplates

| Component Type I Filesl Parametersl Signals | Interfacesl

= About Signals

If you have not spedified an HOL file, you can add signals with the Add Signal button, These signals will appear on
the topJevel system module when the component is used in a system, and you must connect them to an external
device manually.

| On this tab you can assign the signals found on the component's topdevel HOL module to one or more iferiaces.

To create an interface:

1. Select a signal you wish to assign to the new interface.
2. Click on the signal's Interface setting.
3. Choose one of the new [Fypel... options.

m to an interface and spedify its signal type.

If you specified one ar maore HOL files, the Width and Direction settings match the HDL definitions. Otherwise, you
must specify the width and direction for each signal. Signal direction is from the perspective of the IP component.

Mame Interface Signal Type Width Direction
clock reset =] - P
clodk_reset - (reset 1 input
reset ~ ||read 1 input

write avalon_slave_0 write 1 input

address rew AHE Master. .. address 1 input
readdata new AHB Save... readdata 32 output
writedata new AP Master... writedata 32 input
pwmled new APB Siave... - ||writeresponsevalid_n 1 output

new Avalan Memary Manped Master... 1

new Avalan Memary Mapped Save. ..

new Avalan Sireaming Source...

new Avalan Streaming Sk, ..

new Avalan Memary Manped Thistate Save...

new AT SEve...

new AXTH Master...

O Once an interface exists, you can rename it on the Interfaces tab. The Signal tab shows the
interface name, not necessarily the type. Though newly created interfaces get a descriptive
name by default the name does not matter -- so you can be creative if you wish and | have done
so for purposes of demonstration®. Make sure all HDL port names shown are mapped to an
interface and the signal type within that interface matches the function and polarity you can
infer from the HDL port name. Refer to the below picture as a guide. (Note: the conduit signal
type is a bit odd and identified as export)

Adding and Simulating Custom SoC Peripherals Page 9

Macnica Americas

File Ternplates
| Component Type | Files I Parametersl Signals | Interfaces|

b About Signals

Mame Signal Type Width Direction
clock larry_the_clock clk 1 input
reset moe_the reset reset 1 input
read curly_the_avalon_slave read 1 input
write curly_the_avalon_slave write 1 input
address curly_the_avalon_slave address 1 input
readdata curly_the_avalon_slave readdata 32 output
writedata curly_the_avalon_slave writedata 32 input
pwmled hemo_the_conduit export 1 output

O After the prior steps, you might have “left over” interfaces on your Interfaces tab with no HDL

O

signals/HDL ports assigned. There is a convenient button Remove Interfaces with No Signals on
the Interfaces tab just for this purpose.

Finally, most interface types (for example, an Avalon-mm slave) require association with a clock
and reset signal. This is done on the Interfaces tab you should have error messages regarding
them missing. Assign the correct clock and reset to the Avalon slave, reset and conduit
interfaces. There should no remaining errors in the status window when complete.

-
A& Component Editor - mypwmled_hw.tcl*

File Templates
Component Type | Files | Parameters I Signals | Interfaces

b About Interfaces

~* "curly_the_avalon_slave" (Avalon Memory Mapped Slave)

Mame: |curly_the_avalon_slave [Documentation

Type: Awalon Memory Mapped Slave -

Assocdated Clock:

Associated Reset:

Assignments:

Aside from association with a clock and reset, you will not need to change any other component
properties for interfaces from their defaults (for example, words-vs-byte transfers, timing,
pipelining, etc). Just be aware that, for a more complex component, you do have access to such
parameters to match the functionality of the HDL.

Close and save your component a final time. Your custom component now appears in the
component library. Close Qsys.

Adding and Simulating Custom SoC Peripherals Page 10

Macnica Americas

soys

File Edit System Generate View Tocols Help

; Library 25 ™.

-~ @ mypwmled

Hints: Custom Component Creation

-

A& Component Editor - mypwmled_hw.tcl*

File Templates

| Component Type | Files | Parameters I Signals| Interfaces |

b About Interfaces

G"cuﬁv_the_mra lon_slave" (Avalon Memary Mapped Slave)
+ "larry_the_clock" (Clock Input)
F "moe_the_reset” (Reset Input)

¢ "shemo_the_conduit™ (Conduit)

2.2 Component Editor Basics

Now we will look at the output of the Component Editor and understand how this file interacts with the
Qsys component library and HDL source code. We will also enhance our component with the addition of
a parameter that can be configured when instanced in a system.

0 Locate the mypwmled_hw.tcl — this is the output file of the Component Editor created when
you hit Finish and save. Notice that it is not in the same folder as the source code. This is a bit
undesirable — the location is a result of the “path focus” Qsys had when we invoked the

Adding and Simulating Custom SoC Peripherals Page 11

Macnica Americas

Component Editor. Specifically, we had no Qsys system open so our “focus” was in the default
project directory. Move (don’t copy/paste) mypwmled_hw.tcl to the
soc_simple/source/mypwmled folder so it is in the same location as its source. Launch Qsys (or
do a System Refresh via the File pull-down menu if you never closed it). Do you see a change in
the availability of your new component in the library? Do you know why?

Add the new location of the mypwmled_hw.tcl file to the Qsys search path via Options under
the Tools pull-down menu in Qsys. Be sure to hit Finish and not just close the window or your
changes will not take effect. A refresh of the library occurs automatically. Is the new
component available in the library now? What happens if you try to edit the component again?
(Close the component without saving when you do this!). Any theories based on the error
message? (Try viewing the contents of mypwmled_hw.tcl in a text editor to try and identify the
problem).

It will take two simple edits of the mypwmled_hw.tcl file for it to operate properly in its new
location. After edit, you must perform a System Refresh for this file to be re-parsed. Try to fix
things and return expected to proper operation — refer to tips if necessary.

Now edit the mypwmled.v file and, per the picture below, make a total of three changes to
comment/uncomment the declaration of scratchreg_reset and its use to set the value of
scratch_reg on a reset. In Qsys, open the mypwmled component for editing and reanalyze the
source files to bring in this change. Notice the change on the Parameters tab of the Component
Editor. Click Preview the GUI to preview what a user will see adding this component to their
system. Click Finish and save this change to the component which will create a new version of
mypwmled_hw.tcl. Review the impact of adding this parameter to the mypwmled_hw.tcl with
your favorite text editor.

Elmodule mypwmled (

input wire clock,
input wire reset,
input wire read,
input wire write,
input address,
output wire [31:0] readdata,
input wire [31:0] writedata,
output wire pvmled

)i

reg [31:0] controlreg;

reg [31:0] scratchreg;

reg [31:0] rdata;

reg [31:0] pwmcnt;

reg led;

Cparamecer scratchreg reset = 32'h0;)

//1 bit address space
always @ (posedge clock)
Bleegin

| if (reset)
= begin
caontrolreg <= 32'bL02
// scratchreg <= 32'b0;
scratchreg <= scracchreg_:eseci;
and
else
= begin
n

Adding and Simulating Custom SoC Peripherals Page 12

Macnica Americas

Hints: Component Editor Basics++

http://www.altera.com/literature/hb/qts/qsys tcl.pdf

2.3 BFM Simulation

We will now use Qsys to create a BFM-based test bench for our component so that we can verify its
functionality in a simulation software package. Since we are using a standardized interface, it is typically
sufficient (and certainly much faster) to simulate our component alone with BFM modeling of its
connections into a system rather than simulating all system components fully and simultaneously.

O Create a folder /bfmsim inside /soc_simple/source/mypwmled. Invoke Qsys, create a “new”
system, and save it as dut.gsys in the folder /soc_simple/source/mypwmled/bfmsim. Delete
the default clock component present and add the mypwmled component to the system. (You
are prompted by your previewed GUI for the scratchreg_reset parameter value. Enter
something memorable and take note for later comparison). Now export all signals with their
default names by double-clicking in the Export column. See graphic below for this step
completed — and at the hints section if your attempt looks wildly different and you can’t figure

out why!

E Library 23 = t: System Contents % Address Map %| Project Settings 53|

L F'4 P |Use C.. Name Description Export Clock B:
Project b
- New Component... E:. c curly_the_avalon_slave |Avalon Memory Mapped Slave |mypwmled_0_curly_the_avalon_slave |[larry_the_clock]
Library . C larry_the_dodk Clock Input mypwmled_0_larry_the_clock exported
. = > moe_the_reset Reset Input mypwmled_0_moe_the_reset [Jarry_the_dock]
e < shemo_the_conduit Conduit mypwmled_0_shemo_the_conduit larry_the_dock]

--Bridges

0 Use the Generation pull-down menu and set options to Create a Testbench Qsys System =
Standard, BFMs for standard Qsys interfaces in Verilog. (We can also disable generation of files
for synthesis by selecting None in that section to save time; we are doing sim only for this
system and not synthesizing the design to put in to the FPGA itself). You might also notice the

Adding and Simulating Custom SoC Peripherals Page 13

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf

Macnica Americas

output directories identified — we are accepting the defaults. Press Generate to create the
output files selected.

[* simulation |

The simulation model contains generated HOL files for the simulator, and may indude simulation-only features.

Create simulation model: Mone - |

Allow mixed-anguage simulation

|' Testbench System

The testbench system is a new Qsys system that instantiates the original system, adding bus functional models to drive the topevel interfaces.
Once generated, the bus functional models can interact with the system in the simulator.

Create testbench Qsys system: Ilsmndard, BFMs for standard Qsys interfaces | I
Create testbench simulation model: ™| Ngne

-

Allow mixed-anguage simulation

[~ synthesis

Synthesis files are used to compile the system in a Quartus II project.

Create HDL design files for syntﬁesis

Create block symbol file ((bsf)

|' Dutput Directory |

Path: D fAltera Tools/13. 1/quartus fqdesigns/soc_simple source mypwmiled bfmsim/dut D
Simulation:
Testbench: D:/fAltera Tools/13. 1/quartus /gdesignsfsoc_simple source fmypwmled fbfmsimdutftestbench/
Synthesis:
[Generate ” Cancel]

0 Generation creates a new Qsys file called dut_tb.qsys. Locate, open and examine the contents
of this system with Qsys. Notice that our original system of single component under test
(dut.gsys) is instanced in this new system (dut_tb.qsys). This is an example of a Qsys system
instancing another Qsys system — neat! Notice also the component called dut_inst has the
appropriate Altera BFM components instanced and connected on each of its interfaces. Below
is a simplified picture from the presentation slides of this test bench system. (Aside: we could
have achieved the same result by manually instancing and connecting the appropriate BFMs in

the original system dut.qgsys, but this also requires manually configuring many parameters of
each BFM component to match the mode used. Having Qsys generate the test bench system for
us does this “automagically”!).

Adding and Simulating Custom SoC Peripherals Page 14

Macnica Americas

Component Generated
Testbench by Qsys

Avalon-MM

N i
- (DUT)

O Now generate the simulation model of the test bench system. Using the Generation pull-down
menu option of the dut_tb.gsys system select Verilog as a simulation model and disable
Synthesis and Testbench per the below screenshot (the latter two not actually necessary, but
speeds up generation since we are using this system for simulation purposes only).

—

R e)

[* simulation |

The simulation model contains generated HOL files for the simulator, and may indude simulation-only features.

Create simulation model:

[Allow mixed4anguage simulation

[* Testbench System

The testbench system is a new Qsys system that instantiates the original system, adding bus functional models to drive the topdevel interfaces.
Once generated, the bus functional models can interact with the system in the simulator,

Create testbench Qsys system: m -
Create testbench simulation model: one

Allow mixedHanguage simulation

|' Synthesis

Synthesis files are used to compile the system in a Quartus II project.
Create HOL design files for synthesis: [yone - |

Create block symbol file (.bsf)

[~ output Directory |

Path: D:fAltera Tools/13. 1/quartus,/gdesignsfsoc_simple/source mypwmled bfmsim/dut/testbench/dut_tb E]
Simulation: D:/fAltera Tools/13. 1/quartus /gdesigns fsoc_simple source fmypwmled fbfmsim,/dutftestbenchfdut_th/simulationf
Testbench:
Synthesis:
[Generate H Cancel]

O The generated simulation model creates a compilation script for most popular simulators (Aldec,
Cadence, Mentor, Synopsys). We will use the provided Mentor compilation script as a base and
tweak it just slightly. Specifically, edit
/bfmsim/dut/testbench/dut_tb/simulation/mentor/msim_setup.tcl so that all design files (not

Adding and Simulating Custom SoC Peripherals

Page 15

Macnica Americas

device library files) compile into the same working library called work. The below image shows
the necessary edit. (Caution: if you regenerate the testbench your edits here will be overwritten,
but it is unusual to repeatedly generate the testbench).

108 F m o
115 l# Compile the design files in correct order

116 alias com |

117 echo "\ [sxec\] com”

118 vlog -sv "£QSY5S SIMDIR/submodules/verbosity pkg.sv" f -work work \
118 vlog -sv "§Q5YS SIMDIR/submodules/avalon mm pkg.sv"” -work work
120 vlog -sv "§Q5YS5 SIMDIR/submodules/avalon utilities pkg.sv™ -work work
121 vlog "&Q5Y5_5IMDIR/submodules/mypwmled.v"™ -work work
122 vlog —-sv "SQ5Y5_S5IMDIR/submodules/altera conduit_ bfm.swv"™ -L altera common_sv_packagee -work work
123 vlog -sv "8Q5Y5 SIMDIR/submodules/altera avalon mm master bfm.sv" -L altera_ common sv_packageg -work work
124 vlog -sv "5Q5Y5 SIMDIR/submodules/altera avalon reset source.sv”™ -L altera_common sv_packagep -work work
125 vlog -sv "5Q5Y5 SIMDIR/submodules/altera avalon clock source.sv™ -L altera_ common sv_packageg -work work
126 vlog "$Q5Y5_SIMDIR/submodules/dut.v" -work work
127 wvlog "$Q5Y5_SIMDIR/dut_th.v™ H
1iz8]

0O We must now have a test program that interacts with the BFMs of the dut_tb.qsys using their
API calls. People make careers out of verification and creating a robust test program with
automated checking is well beyond the scope of this lab ... but an ultra-simple test program has
been provided for you. Create the folder /source inside
/soc_simple/source/mypwmled/bfmsim. Copy test_program.sv into this folder from
SoC_3_lab/resource. Review the copied file in a text editor; you should be able to follow its
basic operation using the comments provided.

O Next, we need a single top-level file that instances both our test program test_program.sv and
the testbench dut_tb.qgsys. This is a very, very simple task...but to prevent typos a top-level has
been created for you. Copy top.v from the folder /SoC_3_lab/resource folder into
/mypwmled/bfmsim/source. Review the file contents to fully comprehend its simplicity.

O Lastly, we will use a short, custom tcl script to execute our simulation from the ModelSim
prompt. Copy run_sim.tcl from /SoC_3_lab/resource folder into
/soc_simple/source/mypwmled/bfmsim/source and review its contents. It is largely calling
macros defined by the Qsys compilation script msim_setup.tcl to compile the th_dut.qsys
simulation files generated prior.

O Invoke ModelSim-ASE and change-directory to /soc_simple/source/mypwmled/bfmsim/source
which is where the sim execution script run_sim.tcl was placed. Source this execution script
with the command do run_sim.tcl at the ModelSim prompt.

Adding and Simulating Custom SoC Peripherals Page 16

Macnica Americas

F — R

File Edit View Compile 5Simulate Add Transcript Tools Layout Bookmarks Window Help
IERETrEEIEE T T | ema

J ColumnLayout |AllC'c:lu1mS

I, Library HA X
"I Name |Type |Paﬁ1 | | -
ﬂ—m 220model Library EMODEL_TECH/. . falterafvhdlf220model
ﬂ—m 220model_wer Library SMODEL_TECH/.. falterafverilog/220m. ..
ﬂ—m altera Library SMODEL_TECH/.. falterafvhdlfaltera
ﬂ—m altera_Insim Library SMODEL_TECH/.. falterafvhdlfaltera_|...
ﬂ—m altera_lnsim_ver Library SMODEL_TECH/. . falterafverilog/faltera. ..
ﬂ—m altera_mf Library SMODEL_TECH/.. falterafvhdlfaltera_mf
ﬂ—m altera_mf_ver Library SMODEL_TECH/. . falterafverilog/faltera. ..
ﬂ—m altera_wver Library SMODEL_TECH/.. faltera fverilog faltera
ﬂ—m altgxb Library EMODEL_TECHY/. . falterafvhdlfaltgxb
ﬂ—m altgxb_lib Library SMODEL_TECH/.. falterafvhdlfaltgxb
ﬂ—m altgub_ver Library SMODEL_TECH/. . falterafverilogfaltgxb
. dAn . Ca fe i ——— 4 R -
{1 Transcript i H A x|
Reading D:/Rltera/Tools/l3.1/modelsim ae/tcl/vaim/pref.tcl e
cd D:/Altera/Tocls/13.1/quartus,/gdesigns/soc simple,/source/mypwmled,/bfmsim/source
ModelSim> do run_sim.tcl|
-

|<No Design Loaded> |<No Context= |

e

O You should see compilation messages scroll by and then the simulation run. In the waveform
window, select all signal names and use the right-click menu to change their radix to hex for
easier reading (they are binary by default). You will probably want to zoom in/out as well.....but
you should be able to identify your custom scratch register reset value and the response of the
custom component to the writes and reads defined in the file test_program.sv.

Adding and Simulating Custom SoC Peripherals Page 17

Macnica Americas

Edit View Add Format Tools Bookmarks Window Help

i o el

H o x|

‘Wave - Default
P Y-T-N" ;wm%“tﬁt

mmm]qﬁigﬁgué

| % = 4] = QD‘

& e EF[toopa S ELENERE S | 5y B0

|
.

[vt & 4|[[L A

EELEL

D6 v HE - e | SEEI'Eh:’iﬂgg% #

<. ftop/tb/dut_inst_mypwmled_0_larry_th... [1
4 ftopfth/dut_inst_mypwmled_0_moe_th.
B~ jtop/tb/dut_inst_mypwmled_0_curly_t
Stopfthfdut_inst_mypwmled_0_curly_t
[top/th/dut_inst_mypwmled_0_curly_t.
ftopfthfdut_inst_mypwmled_0_curly_t
Stopfthfdut_inst_mypwmled_0_curly_t
ftop/fthfdut_inst_mypwmled_0_shemo_...
Jftop/ftb/dut_inst/mypwmled_0/dodk
ftop/thy/dut_instfmypwmled_0/reset
Stopftb/dut_inst/mypwmled_0/read
[top/fth/dut_instfmypwmled_0/fwrite
Stopfthfdut_instfmypwmled_0/address
E3-“. jtop/th/dut_inst/mypwmled_0jreaddata
B jtop/thfdut_inst/mypwmled_0/writedata
4. ftopfth/dut_inst/mypwmled_0/fpwmled
B jtop/tb/dut_inst/mypwmled_0/controlreg
B4 Jtop/tb/dut_inst/mypwmled_0/scratchreg
+ ftop/jthy/dut_instfmypwmled_o/rdata
B jftop/th/dut_inst/mypwmled_0/pwment
4. jtop/tb/dut_inst/mypwmled_0/led

Msgs.

i

LY

00000007

]

Bob b B B A

00000007
OO

1

00000000
00000007 [a
00000007
00000000

1

Now [00000 ps

| Cursor 190000 ps
: | T o |
| 80145 ps to 3649714 ps ‘ Jtop/th/dut_instjmypwmled_0/pwment [31:0] A
= =S =
O View the transcript window and take note of the messaging from the BFM models. The amount
of information output is controlled by the verbosity setting applied in the user test program
test_program.sv.
T _—
Lo
0: cp.tb.dut_inst mypwmled O_larry the clock bfm. hello: - Hello from altera clock source.
0: op. ed_0_larry_the_t fm.__hello: - SRevision: #1 §
0: op-. ed_0_larry_the_: im.__hello: - $Date: 2013/02/11 %
0: op. dut_inst_mypwmled 0_larry the_: .__hello: -
0: INFO: = o e
0: _0_moe_the_re .__hello: - rom altera_reset_source
0: .dut_inst_myp ed_0_moe_the_rese im.__hello: - sion: #1 §
0: ed 0_mce_the_reset_l] hello: - : 2013/02/11 &
0: .dut_inst_mypwmled 0_moe_the_reset hello: - T_HIGH_RESET =
0: .dut_inst_mypwmled_0_mce_the_rese TIAL_RESET_CYCLES = 50
0: e e e ——————
0: .dut_inst ed 0_moe_the_re Reset asserted
0: .dut_inst_mypwmied 0_curly_ the_: : - Hello from altera_ avalon mm master bfm
0: .dut_inst_mypwmled 0_curly_the_av < = $Revision: #1
0: .dut_inst_my ed_0_curly_ the_; y_slave_bim._ | 3 - $Date: 2013/02/11 &
||# 0: .dut_inst mypwmled O0_curly the avm slave bfm. hello: - AV_ADDRESS_W -1

Hints: BFM Simulation

Adding and Simulating Custom SoC Peripherals

Page 18

Macnica Americas

http://www.altera.com/products/software/quartus-ii/modelsim/qts-modelsim-index.html|

2.4 Project Integration

We will now bring the custom component into our simple SoC system. Since we are limited in the
number of LEDs available, we will rob the most significant led bit (LED3) from GPIO control and instead
drive it with the new custom component mypwmled.

O Open the gsystem.qsys file located in soc_simple/source/qsys system which was the focus of
the previous lab. (Don’t forget you can use your interconnect filters to simplify the system
view). Add the mypwmled component and accept the default component name. Make
connections from this component into the system using the info in below table and graphic:

Component scratchreg_on Avalon-MM slave Clock Interface Reset Interface Conduit Interface
Name _reset interface
mypwmled_0 something Same as Same as Same as Export as pwm_out
memorable button_pio button_pio button_pio (not the default)
components components components

O Edit the base address for the mypwmled component to be 0x000100C0 which is important to
note for our peeking/poking later.

B button_pio PIO (Parallel 1f0)
dk Clock Input clk
reset Reset Input [clk]
sl Avalon Memory Mapped Slave [clk] & 0x0001_0080
o external_connection Conduit buttons
= mypwmled_0 mypwmled
curly_the_avalon_slave |Avalon Memory Mapped Slave [larry_the _dock] 0x0001_00c0
larry_the_dock Clock Input clk
moe_the_reset Reset Input [larry_the _clock]
O shemo_the_conduit Conduit pwm_out [larry_the_dlock]

O Use the Generate pull-down menu to create the HDL Example and confirm that there is now a
top level HDL connection called pwm_out_export. This didn’t exist prior, so we’ll need to
update our top-level Quartus project soon.

Adding and Simulating Custom SoC Peripherals Page 19

http://www.altera.com/products/software/quartus-ii/modelsim/qts-modelsim-index.html

Macnica Americas

O You should have no errors identified in the message window. Use the Generate pull-down

menu to enable Verilog output in the Synthesis section. Simulation and Testbench generation
can be disabled to save time. Click Generate, saving the system if necessary. Hopefully you
have no errors!

Edit the soc_simple.v file located in /soc_simple/source/rtl to add the new output pwm_out to
both the top-level port list and the instance of the Qsys system. We will also reduce the top-
level fpga_led bus from 3 to 2 bits. For those unfamiliar with Verilog, use the below pictures as
a guide. Don't forget the trailing comma modification circled.

soc_simplewv X

16 output wire trace_clk,
47 output wire ([7:0]} trace_data,
] //HPS GPIO
50 inout wire [3:0] hps_button,
52 //FPGA GPIO

3 outrput wire fpga led,
54 input wire [2:0] fpga_butt
56 //MYLEDPWM
57 output wire pwm_out
59) i

.leds_export

(fpga_led),

132 .buttons_export

(fpga_bucto<::>

(pwm_out)

)

O We now need to assign this new output to a pin. Launch the Assignment Editor (under the

Assignments pull-down menu in Quartus) and sort by name. Find the location assignment for
fpga_led[3] which is currently to PIN_AC4. Edit the name from fpga_led[3] to pwm_out. This
pin/led will now be driven by our new mypwmled component instead of the led_pio
component. We'll leave this bit of the led_pio dangling — it won’t harm anything.

Perform a full compilation of the project. Verify that a new soc_simple.sof file was created by
viewing its timestamp. In the compilation report notice that the Timequest section is now red —
we’ll ignore for purposes of this lab, but do you know why?

Hints: Project Integration

Adding and Simulating Custom SoC Peripherals

Page 20

Macnica Americas

2.5 Interaction and Verification
Now let’s use SystemConsole as we did in SoC 2 lab to peek/poke our system and verify operation of our
new component hardware at location.

O This is largely a repeat of the previous lab with the added bit of detail that our custom
component is at location 0x000100C0 and a memory space of two 32-bit words.

O Perform a 32bit peek to address 0x000100C4. This is the scratch register. Does its value match
your expectations?

O Now do a poke to address 0x000100C0 of 0x02FAF080 and observe LED3. Any idea on why this
value specifically? (What is it in decimal, what frequency is our myledpwm component
operating, and why is this significant? Maybe look again at the myledpwm.v source file....)

Td Console
e o

% set fcon [lindex [get_service_paths master] 0]

/devices/5CS (EBAGES | XFCEC6ES) | . .2H§USB~1/ (1ink) /JTAG/fpga console.jtag/phy 1/fpga console.master
$ open_service master $fcon

%t master read 32 $fcon 0x000100c4 1

Oxbabecafe

t master write 32 $fcon 0x000100c4 0x02£af£080

& master read 32 $fcon Ox000100c4d 1
0x02faf080

$

m

Hints: Interaction and Verification

Adding and Simulating Custom SoC Peripherals Page 21

Macnica Americas

3 Notes

Adding and Simulating Custom SoC Peripherals Page 22

Macnica Americas

Document Revision History

Revision Date Comments
0.1 May 8, 2013 Initial Draft
0.2 May 27, 2013 Internal Review
1.0 May 29, 2013 Customer Release
2.0 March 17,2014 Updated to Q-1 13.1

Adding and Simulating Custom SoC Peripherals Page 23

