
Macnica Americas

Building Linux and Simple Application Page 1

Building Linux and Simple Application

Version 2.0

March 20, 2014

Corporate HQ & Design Center
380 Stevens Ave. Suite 206

Solana Beach, CA 92075
http://www.macnica-na.com

http://www.macnica-na.com/

Macnica Americas

Building Linux and Simple Application Page 2

About Macnica Americas
Macnica Americas is a franchised semiconductor distributor for multiple, high-tech suppliers within

North America. Our business model emphasizes unsurpassed technical support and knowledge versus

other distribution options at no cost premium. Macnica Americas is the North American based division

of Macnica Inc., a $2.4B global leader in semiconductor distribution. We maintain a field support staff

as well as centralized design & applications teams.

Optional design services are headquartered in San Diego, CA., USA and offer partial or full turnkey

design of FPGAs, power distribution networks, and full PCB design. Our expertise includes all aspects of

high speed communications protocols and networking, video broadcast, signal processing, and storage

applications. Macnica’s specialty is high density, high speed complex FPGA designs utilizing multiple IP

cores with fast time to market requirements.

Macnica can help you deliver a winning project with the unique combination of technical support,

custom IP, and design services. Setup a meeting today!

http://www.macnica-na.com

License and Terms of Use
This lab with its associated source code and support files, are being provided on an "as-is" basis and as

an accommodation. Therefore all warranties, representations or guarantees of any kind (whether

express, implied or statutory) including, without limitation, warranties of merchantability, non-

infringement, or fitness for a particular purpose, are specifically disclaimed.

This source code may only be used in an Altera programmable logic device and may not be distributed

without permission from Macnica Americas, Inc. It is provided free of royalties or fees of any kind.

http://www.macnica-na.com/

Macnica Americas

Building Linux and Simple Application Page 3

Table of Contents
About Macnica Americas .. 2

License and Terms of Use ... 2

1 Lab Overview... 4

1.1 Introduction and Goals ... 4

1.2 Hardware and Software Requirements .. 4

1.3 Assistance .. 4

1.4 Lab Agenda and Milestones .. 4

2 Lab Instructions ... 6

2.1 Extract Yocto Source Package archive .. 6

2.1.1 Obtain latest Yocto Source Package archive ... 6

2.1.2 Extract archive... 6

2.2 Install local set of Yocto recipes .. 8

2.2.1 Local recipes .. 8

2.3 Create local build location .. 9

2.3.1 Local build directory .. 9

2.4 Build Linux ... 10

2.4.1 Build bootloader, kernel and root file system .. 10

2.4.2 Build preloader and device tree blob.. 11

2.5 Program images to microSD flash ... 16

2.6 Create and debug simple Linux application .. 18

2.6.1 Build “Hello World” Linux application .. 18

2.6.2 Debug “Hello World” Linux application .. 19

2.7 Modify U-Boot (Requires Quartus II Programmer) ... 20

2.7.1 Program the FPGA ... 20

2.7.2 Modify U-Boot Source ... 21

3 Notes ... 26

Document Revision History ... 27

Macnica Americas

Building Linux and Simple Application Page 4

1 Lab Overview

1.1 Introduction and Goals
This lab is designed as a self-paced-learning tool for understanding the fundamentals of the Yocto

project building Linux for the Altera SoC. Only relatively small subset of the Yocto project options are

explored. It is highly recommended persons attend additional training, such as that offered by Altera

directly, for more detailed education on this rather complex flow and device family.

The lab is broken into a series of major sections or milestones representing the common phases of the

Yocto flow. Unlike other trainings you may have had, this lab does not explicitly indicate every button to

push or value to enter. Instead, your goal is described with the necessary information given. If you are

having problems, each section concludes with a series of hints related to the tasks proposed.

1.2 Hardware and Software Requirements
 Linux host OS (This lab uses CentOS 6.4)

 Quartus II v13.1 (web or subscription edition) or stand-alone device programmer

 SoC EDS v13.1 installed on Linux

 Altera’s GSRD Yocto Source Package, downloaded but NOT installed/extracted

o http://releases.rocketboards.org/release/2013.11/gsrd/src/linux-socfpga-gsrd-13.1-src.bsx

 Macnica Helio SoC Evaluation board with 2 micro-USB cables and 1 Ethernet cable

 Win32 Disk Imager for Windows (Optional - writes Linux image/binary files to microSD using

Windows host)

 Terminal Program (for Helio board UART interface)

1.3 Assistance
A dedicated e-mail account has been setup to receive support requests for the vWorkshop series.

Please identify the course (in this case Yocto Linux) in addition to details on the question.

workshophelp@macnica.com

1.4 Lab Agenda and Milestones

Extract Yocto Source Package archive

The Yocto Source Package is an installer package provided by Altera that contains the Yocto build

system, Yocto recipes & layers and all the necessary dependencies to compile the Altera Linux

bootloader, kernel and root file system.

Install local set of Yocto recipes

Each user will use a local set of recipes to control each build.

Create local build location

This is a user’s local copy of the Linux source.

http://releases.rocketboards.org/release/2013.11/gsrd/src/linux-socfpga-gsrd-13.1-src.bsx
mailto:workshophelp@macnica.com?subject=Yocto%20Linux

Macnica Americas

Building Linux and Simple Application Page 5

Build Linux

Utilize the Yocto project concept of recipes and layers to build a complete Linux system, inclusive of the

kernel, root file system and bootloader.

Build Preloader and Device Tree Blob

Utilize the SoC EDS tools to generate the necessary preloader and device tree blob to complete the

generation of all required images to successfully boot Linux.

Program images to microSD flash

Once all essential Linux files are built, you will program them to the microSD card so that the Helio will

boot from power-on.

Create and debug simple Linux application

The pre-defined Linux kernel has the GNU debug system enabled. You will write a simple “Hello World”

application, use the Linaro cross-compiler to build the executable, then transfer the executable to the

target and step through the application.

Modify U-Boot

As part of the boot-up process, the bootloader, U-Boot, can be used to access the system at a low-level.

Having the ability to modify the bootloader to accommodate custom functionality can prove invaluable.

Macnica Americas

Building Linux and Simple Application Page 6

2 Lab Instructions

2.1 Extract Yocto Source Package archive

2.1.1 Obtain latest Yocto Source Package archive

In order to match the solution project, obtain the latest archive. It can be downloaded from the

RocketBoards.org: http://releases.rocketboards.org/release/2013.11/gsrd/src/linux-socfpga-gsrd-13.1-

src.bsx

2.1.2 Extract archive

 The Yocto Source Package may be installed in a publicly accessible location, as this step can be

shared by all the users on the system. The default location is /opt/altera-linux.

Hints:

 If you wish to use this location, you will likely need root access in order to access this directory.

This is why the command shown below is ran using sudo.

http://releases.rocketboards.org/release/2013.11/gsrd/src/linux-socfpga-gsrd-13.1-src.bsx
http://releases.rocketboards.org/release/2013.11/gsrd/src/linux-socfpga-gsrd-13.1-src.bsx

Macnica Americas

Building Linux and Simple Application Page 7

Additional installed files question

 What additional critical files were installed with the Yocto Source Package archive extraction?

Answer:

 The Linaro tool chain.

Macnica Americas

Building Linux and Simple Application Page 8

2.2 Install local set of Yocto recipes
The next step is to install a local set of Yocto recipes. This could be done in a shared location, but if

someone wants or needs to modify them they should have their own version. The default install

location for this is within your home directory:

2.2.1 Local recipes

 Follow the prompts from the archive extraction in the previous step to create the local set of

recipes in your home folder ~/yocto.

Meta layers questions

 1. What did the ‘install_altera_socfpga_src.sh’ script do?

 2. What is in the ~/yocto/meta* folders?

 3. What is POKY?

Meta layer answers:

1. The script makes a local copy of the Poky build layers and recipes from the Yocto

Source Package /opt/altera-linux/sources/poky-danny-8.0tar.gz

2. The meta layer folders are the collection of recipes that configure the Poky kernel

build.

3. Poky is an integration of various components to form a complete prepackaged build

system and development environment. It features support for building customised

embedded device style images. There are reference demo images featuring an

X11/Matchbox/GTK themed UI called Sato. The system supports cross-architecture

application development using QEMU emulation and a standalone tool chain and SDK

with IDE integration.

Macnica Americas

Building Linux and Simple Application Page 9

2.3 Create local build location
The last step in setting up the build environment is to create a build directory. By keeping this

separate from your Yocto source you can erase an entire build without fear of deleting your Yocto

sources. Also, you can have several build directories, each with its own configuration, all based on

the same Yocto source.

2.3.1 Local build directory

 Follow the prompts from the recipe installation in the previous step.

Local build script question

 What did the ‘altera-init’ script do?

Local build script answer:

 The script serves 2 purposes:

o First, it creates the new build directory using Altera’s default configuration.

This is the specific configuration that dictates the target hardware,

“MACHINE = socfpga_cyclone5” as well as the tool chain to be used, Linaro,

 and the location of the local source archives, /opt/altera-linux/source.

o Secondly, it sets shell variables that are required for building. Note: If you

start a new shell you will need to run script again to set the shell variables

again. It will not create another build directory if one exists.

Macnica Americas

Building Linux and Simple Application Page 10

2.4 Build Linux
In order to boot a functional Linux kernel on the Altera SoC devices, there are five essential items that

need to be generated. The first time you build the Yocto Source Package it may take up to several

hours depending on your host machine.

File Name Description

socfpga.dtb Device Tree Blob file

zImage Compressed Linux kernel image file

various Linux root filesystem

preloader-mkpimage.bin Preloader image

u-boot-socfpga_cyclone5.img U-boot image

2.4.1 Build bootloader, kernel and root file system
The Linux source package provided by Altera targets the Altera SoC development board which has the

capability to program the FPGA from the HPS. However, on the mPression Helio board, the HPS boot-

mode pins are hard-wired to boot from the MMC not allowing the HPS to program the FPGA. This is

important to realize since the default bootloader source code does not enable the bridges between the

HPS and FPGA fabric. We will need to add a simple bootloader command to do this.

Use the Yocto build system ‘bitbake’ command to:

 Modify the default U-Boot “bootcmd” to include the “bridge_enable_handoff” command.

 Build the U-Boot bootloader

 Build the kernel.

 Build the root filesystem.

Once finished, all images generated will be placed in ~/yocto/build/tmp/deploy/images

Hints:

 Extract the bootloader source from the archives into your local build tree.

http://www.rocketboards.org/foswiki/Documentation/GSRDSdCard?sortcol=1;table=1;up=0#sorted_table
http://www.rocketboards.org/foswiki/Documentation/GSRDSdCard?sortcol=2;table=1;up=0#sorted_table

Macnica Americas

Building Linux and Simple Application Page 11

o ‘bitbake –c install virtual/bootloader’

 The default “bootcmd” is defined in ~ /yocto/build/tmp/work/armv7ahf-vfp-neon-poky-linux-

gnueabi/u-boot-altera-dist-1.0-r0/uboot-socfpga/include/configs/socfpga_common.h

o Change line 171 to include the “bridge_enable_handoff” command

o #define CONFIG_BOOTCOMMAND "run bridge_enable_handoff; run callscript; run

mmcload; run mmcboot"

 Force the bootloader to be compiled and deployed incorporating your changes.

o ‘bitbake -f -c compile virtual/bootloader && bitbake -f -c deploy virtual/bootloader’

 Build kernel

o ‘bitbake virtual/kernel’

 Build root file system.

o ‘bitbake altera-gsrd-image’

2.4.2 Build preloader and device tree blob
Recall that included in the SoC EDS install are the tools to generate the preloader and device tree blob

that are associated with a specific hardware implantation of the SoC device.

 Extract the SoC_7_lab.zip files to a unique location on your host machine.

 Build the preloader buy using the “bsp-editor” GUI to generate the required source tree and

Makefile

 Build the device tree blob by using the device tree generator tools made up of “sopc2dts” and

“dtc.”

Macnica Americas

Building Linux and Simple Application Page 12

Hints:

 Use a decompression tool of your choice to extract the hand-off files in the SoC_7_lab.zip file

associated with this lab. In the sample screen shots, the files were extracted to

/home/student/Linux_lab.

o Note: These files are generated as part of the Quartus hardware build process.

 Start the SoC EDS embedded command shell to set-up appropriate environment

o /opt/altera-tools/13.1/embedded/embedded_command_shell.sh

 Launch the bsp-editor GUI

o bsp-editor &

 Point to the directory where you copied the hand-off files provided.

 Change the BSP target directory to point to the lab folder as well.

Macnica Americas

Building Linux and Simple Application Page 13

 Leave all default settings and click Generate to create the Makefile and other BSP settings.

 Click Exit and return to the embedded command shell prompt.

 Change directory to the location of the Makefile and enter “make” to build the preloader binary.

Macnica Americas

Building Linux and Simple Application Page 14

 To build the device tree blob, first generate the device tree source by using the sopc2dts tool in
the embedded command shell.

o sopc2dts --input soc_system.sopcinfo\
 --output socfpga.dts\
 --board soc_system_board_info.xml\
 --board hps_clock_info.xml

 You can safely ignore the DTAppend messages

 Next, use the dtc tool to compile the device tree source.
o dtc -I dts -O dtb -o socfpga.dtb socfpga.dts

Macnica Americas

Building Linux and Simple Application Page 15

Linux build questions

 1. Recall, the preloader is hardware dependant. Where did the source come from?

 2. How would you modify the kernel? What if you want to add/remove features of the kernel?

 3. Is there an easier way to copy all five essential files to the microSD flash card without copying

each file independently?

Linux build answers:

1. As part of the SoC EDS installation process, a snapshot of the U-Boot source that

creates the preloader is installed. The Makefile creates a local copy and builds the

preloader from there.

2. The widely used ‘menuconfig’ kernel configuration menu system is available from

within the Yocto environment. The command to run is ‘bitbake –c menuconfig

virtual/kernel’

3. Yes. The script included in the Yocto source package ‘make_sdimage.sh’ will create a

single binary image. See next section for details.

Macnica Americas

Building Linux and Simple Application Page 16

2.5 Program images to microSD flash
To boot Linux on the Helio SoC FPGA development kit, you need to write the images you just built into

one of the two Flash devices: SDMMC or QSPI. For this lab, we will use SDMMC due to its easy

detachability. For SDMMC boot, all boot images will be located inside microSD/MMC card. A script,

make_sdimage.sh is provided that will create a microSD card image, ready to be deployed. You can run

the script without parameters to obtain information about the tool:

/opt/altera-linux/bin/make_sdimage.sh

 Uncompress the root file system, altera-gsrd-image-socfpga_cyclone5.tar.gz,

into a local directory

 Invoke the make_sdimage.sh script to create the microSD card image.

 Program the complete image, sd_image_yocto.bin, into the microSD card.

 Boot Linux

Hints:

 cd ~/yocto/build/tmp/deploy/images

 mkdir rootfs

 cd rootfs

 sudo tar xzf ../altera-image-socfpga_cyclone5.tar.gz

 cd ..

 sudo /opt/altera-linux/bin/make_sdimage.sh /

-k /home/student/Linux_lab/socfpga.dtb,\

 /home/student/yocto/build/tmp/deploy/images/zImage \

 -p /home/student/Linux_lab/preloader-mkpimage.bin \

-b /home/student/yocto/build/tmp/deploy/images/u-boot-socfpga_cyclone5.img \

-r /home/student/yocto/build/tmp/deploy/images/rootfs \

-o sd_image_yocto.bin

 Program microSD card (via Windows or Linux)

o Windows: transfer the sd_image_yocto.bin file to your Windows host, rename it

sd_image_yocto.img and use Win32DiskImager utility to program the microSD card.

(see vWorkshops_Getting_Started.pdf)

o Linux: Insert microSD USB adapter into host PC. If using a VM, allow the VM to take

control of the microSD by selecting “Devices -> USB Devices -> Generic USB Storage”

https://macnica.box.com/shared/static/1st88mycwz05k7xej18r.pdf

Macnica Americas

Building Linux and Simple Application Page 17

 Use ‘sudo blkid’ and locate the device that has the “vfat” and “ext3” partitions.

This is your microSD card. Typically the microSD is mounted as /dev/sdb.

(/dev/sda and /dev/mapper are part of the Linux VM)

 sudo dd if=sd_image_yocto.bin of=/dev/sdb bs=1M seek=0

 sudo sync

 The default serial communications needs to be set-up as

o 115600 baud

o 8 bit data

o No parity

o 1 stop bit

o No flow control

Macnica Americas

Building Linux and Simple Application Page 18

2.6 Create and debug simple Linux application
As part of the Yocto install, the Linaro tool chain was installed. This was the tool chain that was used to

compile the Linux kernel in the previous steps. Now that a complete kernel has been built,

programmed to the microSD flash and booted on the target, we can leverage the same tool chain to

write and debug user applications that run on the Linux OS running on the target.

2.6.1 Build “Hello World” Linux application

 In your host Linux machine, write a simple “Hello World” application.

 Set up Linux host environment for Linaro cross-compiler.

 Build the application with the Linaro cross-compiler.

 Connect the target board to the same network as your host machine.

 Set up Ethernet interface on the target (if the DHCP server in your network did not automatically

configured an IP address.)

 Transfer the application executable ELF to the running Linux OS on the target.

 Run application on the target.

Hints:

 #include <stdio.h>

int main()

{

printf(“Hello World!\n”);

return 0;

 }

 Set path the Linaro tool chain

o export PATH=/opt/altera-linux/linaro/gcc-linaro-arm-linux-gnueabihf-4.7-2012.11-

20121123_linux/bin:$PATH

 Compile application

o arm-linux-gnueabihf-gcc –Wall –g –O0 helloworld.c –o helloworld

 Log into the target via the serial link and set a password for root

o passwd root

 Set IP address of target

o ifconfig eth0 192.168.1.100 (IP address needs to be in the same domain as host)

 From the host secure copy the executable to target

o scp helloworld root@192.168.1.100:/home/root/helloworld

 On the target you can now execute application

o ./helloworld

mailto:root@192.168.1.100:/home/root/helloworld

Macnica Americas

Building Linux and Simple Application Page 19

2.6.2 Debug “Hello World” Linux application

Part of the default kernel build includes the GNU gdb debug server. You can now launch the
application just built using the debug server and connect to the debugger from the host.

 Start the GDB debug server on the target using the above compiled application.

 Connect to target from host to debug the application.

 Set a breakpoint at main().

 Examine registers, step application from host, etc.

Hints:

 Start gdbserver on the target

o /usr/bin/gdbserver <host ip>:1234 ./helloworld &

 Start debugger on host

o arm-linux-gnueabihf-gdb ./helloworld

 Connect to target running gdbserver

o target remote192.168.1.100:1234

 Set breakpoint at main()

o b main

 Examine registers & stack

o info all-registers

o info stack

 Start application and run to first breakpoint

o cont

 Step application

o n

 End debug session

o disconnect

Macnica Americas

Building Linux and Simple Application Page 20

2.7 Modify U-Boot (Requires Quartus II Programmer)
A fundamental piece to booting Linux is the bootloader, typically U-Boot. Sometimes it is necessary to

access the embedded system BEFORE the kernel has been loaded for verification of settings, IP control,

or any number of low-level reasons. In the following example, you will be modifying the default U-Boot

menu system to add in the capability to directly access control registers in the FPGA based LED driver IP.

It is necessary to have the FPGA programmed with the example design for the Helio board which

includes the FPGA LED IP.

2.7.1 Program the FPGA

The helio_ghrd.sof file used to program the SoC FPGA can be found in the resources folder included with

this lab manual.

 Connect a USB cable to the BLASTER USB port on the Helio board.

 Launch the Quartus II Programmer: ~\quartus\bin\quartus_pgmw (or equivalent on Windows)

 Auto Detect the chain and select the 5CSXFC6C6ES device.

 Right click on the FPGA device and chose Change File and select the helio_ghrd.sof file.

 Check the box to Program/Configure the FPGA device.

 Ensure the Cyclone V SoC Base Board [USB-x] connection is visible in the Hardware Setup dialog

box. If not, click the button and select the cable. (Drivers must be previously installed. See the

Altera web site for instructions.)

Macnica Americas

Building Linux and Simple Application Page 21

 Click Start to initiate the programming of the FPGA.

 Upon successful programming, observe the 4 LEDs illuminated near the power input jack.

o Note: If you power cycle the board, you will need to configure the FPGA again.

2.7.2 Modify U-Boot Source

The details of the code modifications that are going to be made are beyond the scope of this lab,

however, for the purpose of understanding the functionality of the code below, the following details are

presented:

The control register to turn the LEDs on/off is located at 0xFF21_0040. Writing 0x0 illuminates the LEDs

and writing 0xFFFF turns the LEDs off.

Recall that running the ‘install_altera_socfpga_src.sh’ script created a local set of layers and recipes

then running the ‘bitbake virtual/bootloader’ command used those recipes and created a local copy of

the source code for the bootloader build. The C source file that contains the U-Boot menu, cmd_mem.c,

is located here:

Macnica Americas

Building Linux and Simple Application Page 22

~yocto/build/tmp/work/armv7ahf-vfp-neon-poky-linux-gnueabi/u-boot-altera-dist-1.0-r0/uboot-

socfpga/common/cmd_mem.c

Modify the cmd_mem.c file as follows:

 At line 200, after the “do_mem_mw” function add:

int do_led_on (cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
{
 *((ulong *)0xFF210040) = 0x0;
}

int do_led_off (cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
{
 *((ulong *)0xFF210040) = 0xFFFF;
}

 At the very end of the file add:

U_BOOT_CMD(
 ledon, 1, 1, do_led_on,
 "turn fpga leds on",
 ""
);

U_BOOT_CMD(
 ledoff, 1, 1, do_led_off,
 "turn fpga leds off",
 ""
);

 Return to the root of the current build and “force” bitbake to recompile the U-Boot target and
redeploy the output. The resulting updated U-Boot image will be
u-boot-socfpga_cyclone5-1.0-r0.img

 Copy the updated bootloader image to the microSD card above the four preloader images in the
0xA2 partition.

 Observe the updated U-Boot bootloader command options that were just added. Toggle the

LEDs.

Hints:

 Change directory to the root of the current build

o cd ~/yocto/build

 Force the recompile of the source for U-Boot

o bitbake -f -c compile virtual/bootloader

Macnica Americas

Building Linux and Simple Application Page 23

 Force the redeployment of the updated U-Boot bootloader

o bitbake -f -c deploy virtual/bootloader

Macnica Americas

Building Linux and Simple Application Page 24

 Insert the microSD card into the host PC.

 Copy the updated bootloader image to the correct partition of the microSD card:

sudo dd if=u-boot-socfpga_cyclone5.img of=/dev/sdb3 bs=64k seek=4

 Reinsert the microSD card into the Helio board; reset the HPS by pressing the cold reset (SW5).

Interrupt the bootloader before the 5 second timeout to gain access to the U-Boot menu system.

 Enter ‘h’ to see a list of available commands.

Macnica Americas

Building Linux and Simple Application Page 25

 Simply enter ‘ledon’ and ‘ledoff’ to toggle the LEDs.

Bootloader questions

 1. If your CPU reset, why? Why did your first attempt to turn the LEDs off cause a “data abort”

and reset the CPU?

 2. How can you keep this from happening?

Linux build answers:

1. When the SoC powers-up, the bridges between the HPS and the FPGA fabric are

disabled. The attempt to communicate over the bridge causes the data failure.

2. After interrupting the bootloader, you can use the built-in environment command

“run bridge_enable_handoff” to turn the bridges on.

Macnica Americas

Building Linux and Simple Application Page 26

3 Notes

Macnica Americas

Building Linux and Simple Application Page 27

Document Revision History

Revision Date Comments

0.1 May 8, 2013 Initial Draft

0.2 May 23, 2013 Internal Review

1.0 May 27, 2013 Initial Release

2.0 March 20, 2014

