
DrivExpress User’s Manual
- Advanced PCI Express Verification Tool -

Doc No: MOUTBD0665
Revision: A

Date: Nov. 16. 2012

©2012 MACNICA AMERICAS, Inc. MACNICA, Inc. All rights reserved.

1. This document contains information that is proprietary to MACNICA AMERICAS, Inc. and MACNICA, Inc.
You may reprint or reproduce this document in whole or in part for internal business purposes only, provided
that this entire notice is preserved in all copies. In reprinting or reproducing any part of this document, the
recipient agrees that every reasonable effort shall be made to prevent the unauthorized use and distribution of
the proprietary information.

2. All information contained in this document is intended to ensure proper understanding of the product callded
DrivExpress™. MACNICA AMERICAS, Inc. and MACNICA, Inc. reserve the right to make changes in
contents contained in this document without prior notice, and you should, in all cases, consult MACNICA
AMERICAS, Inc. or MACNICA, Inc. to determine whether any changes have been made.

3. MACNICA AMERICAS, Inc. and MACNICA, Inc. shall make no warranty or no liability with regard to any
representation or other affirmation of fact contained in this document.

4. To the extent permitted by applicable law, this document is being provided on an "as-is" basis without any
warranties of any kind respecting this document materials, either express or implied, including but not limited
to any warranty of design, merchantability, fitness for a particular purpose, or non-infringement.

5. In no event shall MACNICA AMERICAS, Inc. and MACNICA, Inc. be liable for any damage whatsoever
arising out of the use of or inability to use this document, even if MACNICA AMERICAS, Inc. and MACNICA,
Inc. have been advised of the possibility of such damages.

6. The terms and conditions governing the sale and licensing of the product are set forth in written agreements
between MACNICA AMERICAS, Inc. or MACNICA, Inc. and its customers.

MACNICA AMERICAS, Inc.
380 Stevens Ave., Suite 206 Solana Beach, CA 92075

Website: http://www.macnica-na.com

MACNICA, Inc.
1-6-3 Shin-Yokohama, Kouhoku-ku, Yokohama, 222-8561

Website: http://mssp.macnica.co.jp

http://www.macnica-na.com
http://mssp.macnica.co.jp

CONTENTS

1 What is DrivExpress 1
1.1 Features . 3
1.2 Simulation Environment . 4
1.3 References . 6

2 Tutorial 7
2.1 Making the DUT . 9
2.2 Making The Test Environment . 12
2.3 Writing A Test Script (Part 1) . 14

2.3.1 Creating The Simulation Model . 14
2.3.2 Access to Configuration Registers . 15

2.4 Running The Verilog Simulation . 17
2.5 Writing A Test Script (Part 2) . 18

2.5.1 MSI Interrupt Handling . 18
2.5.2 Preparation for the DMA transfer . 20
2.5.3 Starting the DMA transfer and waiting for completion . 21
2.5.4 Non-Posted and Posted . 22

2.6 About the automatic TCL script . 24

3 Best Practices 25
3.1 Python Classes . 26
3.2 Command Queue and Command Type . 27

3.2.1 Simulation Cost . 27
3.2.2 Command Execution Order . 27

3.3 Split of Test Script Files . 30
3.3.1 File Expansion . 30
3.3.2 File Execution . 32

3.4 Delayed Execution . 35
3.4.1 Delayed Parameter Setting . 35
3.4.2 Delayed Function Execution . 36

3.5 PCI Express Commands and TLPs . 37
3.5.1 Split by Max Payload Size . 37
3.5.2 Relationship between Memory Read TLP and Tag Field . 39
3.5.3 Passing Memory Write Command . 42

3.6 DrivExress TLP FIFO . 47
3.6.1 Egress TLP FIFO . 47
3.6.2 Ingress TLP FIFO . 48
3.6.3 Non-Posted Request FIFO . 49

3.7 Verilog Task and Shell Module . 51

i

3.7.1 Command Processor Model . 51
3.7.2 PCI Express PIPE Interface Model . 52

3.8 Connection Methods in Top Testbench . 55
3.8.1 Command Processor Part . 55
3.8.2 Connection between PIPE interface model and DUT . 56

4 Cookbook 59
4.1 Issues memory read/write TLP with 64-bit address . 60
4.2 Changes max payload size of memory read/write TLP . 61
4.3 Controls DrivExpress log output . 62
4.4 Changes command execution interval . 63
4.5 Issues next command after receiving completion packet -Part 1- . 64
4.6 Issues next command after receiving completion packet -Part 2- . 65
4.7 Sets Read Completion Boundary to 128 bytes . 66
4.8 Transmits completion TLP including max payload size data . 69
4.9 Expands tag field to 8-bit . 70
4.10 Adds CRC in Transaction Layer . 72
4.11 Changes requester ID . 73
4.12 Specifies Bus number, Device number, and Function number . 74
4.13 Waits until PCI Express Link is ready . 75
4.14 Dumps the contents of host memory . 78
4.15 Dumps the contents of host memory to file . 79
4.16 Loads the contests of host memory from file . 80
4.17 Waits for host memory access from Endpoint device . 82
4.18 Registers callback function for host memory access . 84

5 Class References 87
5.1 PCI Express Root Complex class . 88

5.1.1 Link event detection command . 90
5.1.2 Configuration space 8-bit read command . 92
5.1.3 Configuration space 16-bit read command . 93
5.1.4 Configuration space 32-bit read command . 94
5.1.5 Configuration space 8-bit write command . 95
5.1.6 Configuration space 16-bit write command . 96
5.1.7 Configuration space 32-bit write command . 97
5.1.8 Memory space 8-bit read command . 98
5.1.9 Memory space 16-bit read command . 99
5.1.10 Memory space 32-bit read command . 100
5.1.11 Memory space read command . 101
5.1.12 Memory space 8-bit write command . 103
5.1.13 Memory space 16-bit write command . 104
5.1.14 Memory space 32-bit write command . 105
5.1.15 Memory space write command . 106
5.1.16 Completion packet wait command . 107
5.1.17 64-bit memory address enabling parameter . 108
5.1.18 Gen2 enabling parameter . 109
5.1.19 End-to-end CRC enabling parameter . 110
5.1.20 Read Completion Boundary enabling parameter . 111
5.1.21 128 bytes Read Completion Boundary enabling parameter 112
5.1.22 Extended tag field enabling parameter . 113
5.1.23 4KB boundary check enabling parameter . 114
5.1.24 Completion packet wait parameter . 115
5.1.25 Memory write command synchronization parameter . 116
5.1.26 Ingress DLLP raw data print enabling parameter . 117

ii

5.1.27 Ingress TLP raw data print enabling parameter . 118
5.1.28 Egress DLLP raw data print enabling parameter . 119
5.1.29 Egress TLP raw data print enabling parameter . 120
5.1.30 Framer/Striper behavior print enabling parameter . 121
5.1.31 De-Striper/De-Framer behavior print enabling parameter 122
5.1.32 LTSSM report enabling parameter . 123
5.1.33 InitFC report enabling parameter . 124
5.1.34 Configuration read TLP report enabling parameter . 125
5.1.35 Configuration write TLP report enabling parameter . 126
5.1.36 Memory read TLP report enabling parameter . 127
5.1.37 Memory write TLP report enabling parameter . 128
5.1.38 Completion with data TLP report enabling parameter . 129
5.1.39 Completion without data TLP report enabling parameter 130
5.1.40 Requester ID setting parameter . 131
5.1.41 Bus number setting parameter . 132
5.1.42 Device number setting parameter . 133
5.1.43 Function number setting parameter . 134
5.1.44 Max Payload Size setting parameter . 135
5.1.45 Egress TLP FIFO size setting parameter . 136
5.1.46 Ingress TLP FIFO size setting parameter . 137
5.1.47 Egress TLP FIFO pop timing delay parameter . 138
5.1.48 Ingress TLP FIFO pop timing delay parameter . 139
5.1.49 Non-posted TLP request time-out parameter . 140

5.2 Host Memory class . 141
5.2.1 8-bit read command . 143
5.2.2 16-bit read command . 144
5.2.3 32-bit read command . 145
5.2.4 Read command . 146
5.2.5 8-bit write command . 148
5.2.6 16-bit write command . 149
5.2.7 32-bit write command . 150
5.2.8 Write command . 151
5.2.9 Immediate 8-bit read command . 152
5.2.10 Immediate 16-bit read command . 153
5.2.11 Immediate 32-bit read command . 154
5.2.12 Immediate read command . 155
5.2.13 Immediate 8-bit write command . 156
5.2.14 Immediate 16-bit write command . 157
5.2.15 Immediate 32-bit write command . 158
5.2.16 Immediate write command . 159
5.2.17 Memory access event wait command . 160
5.2.18 Memory access event callback command . 162
5.2.19 Event enabling command . 165
5.2.20 Event disabling command . 166
5.2.21 Memory dump command . 167
5.2.22 Read memory file command . 168
5.2.23 Write memory file command . 169
5.2.24 Immediate memory dump command . 170
5.2.25 Immediate read memory file command . 171
5.2.26 Immediate write memory file command . 172

5.3 Simulation Control class . 173
5.3.1 Wait command . 174
5.3.2 Reset command . 175
5.3.3 Simulation stop command . 176

iii

5.3.4 Simulation quit command . 177
5.3.5 Simulation statistics print command . 178
5.3.6 Print message command . 179
5.3.7 Immediate print message command . 180
5.3.8 Run code string command . 181
5.3.9 Run script file command . 182
5.3.10 Expand script file command . 183
5.3.11 Log file generation command . 184
5.3.12 DrivExpress log style for message command enabling parameter 185
5.3.13 License file setting parameter . 186
5.3.14 Command execution interval setting parameter . 187
5.3.15 Random seed value setting parameter . 188
5.3.16 Simulation time get parameter . 189

5.4 Pre-defined Macro . 190
5.4.1 Link State Definition Macro . 191
5.4.2 Memory Access Definition Macro . 192
5.4.3 Configuration Space Register Address Definition Macro 193
5.4.4 Configuration Space Register Data Definition Macro . 195

Index 197

iv

CHAPTER

ONE

WHAT IS DRIVEXPRESS

DrivExpress™ provides a fast and easy-to-use verification environment for PCI Express® Endpoint FPGA designs
that use ALTERA® PCI Express IP. By using DrivExpress with ModelSim® Verilog simulators 1, system level test
scripts can be developed easily.

Because the PCI Express Root Complex model included in DrivExpress has been written in the C++ language, sim-
ulation time is much shorter compared with traditional verification environments consisting of Verilog bus functional
models.

Users write test scripts in the high level scripting language Python® 2 , therefore, test script development work using
DrivExpress is just like developing actual device driver software. It provides a good environment for hardware-
software co-design.

1 Supporting ModelSim ASE/AE/PE/DE/SE or Questa
2 “Python” is a registered trademark of the Python Software Foundation

1

DrivExpress DPI Library, Version 1.0

Figure 1.1: DrivExpress Verification Flow

2 Chapter 1. What is DrivExpress

DrivExpress DPI Library, Version 1.0

1.1 Features

• PCI Express Gen1, Gen2, Gen3 3 support

• x1 - x8 Multi-Lane support

• Fast Verilog simulation due to C++ model

• Simple and easy-to-use Python classes

– PCI Express Root Complex Class

– Host Memory Class

– Simulation Control Class

• Flexible Event Control

– PCI Express Link Event

– Memory Access Event (like MSI Events)

• PCI Express Transaction Log Control

• DPI Connection to Verilog Design

3 Expected release in Q1, 2013

1.1. Features 3

DrivExpress DPI Library, Version 1.0

1.2 Simulation Environment

DrivExpress is provided as shared library (Windows dll file or Linux so file). This library is loaded into the Verilog
simulator along with the DUT 4 – a PCI Express Endpoint FPGA design that uses the ALTERA PCI Express IP.

Because DrivExpress has a built-in Python interpreter, users write test scripts for the DUT in Python. At the beginning
of Verilog simulation, the Python script written by user is read and the commands in the script are executed as part of
the Verilog simulation process. All Python classes provided by DrivExpress have been written in the C++ language
and the corresponding C++ code is called when the Python interpreter executes the commands or parameters supported
by those classes. The C++ code, in turn, controls the DUT through Verilog DPI interface.

All commands and parameters of the Python classes of DrivExpress have been abstracted away to a high level, mir-
roring software development, such that users can understand the code instinctively. Anybody can quickly write code
to access to the PCI configuration space or PCI memory space (including the user’s original registers mapped into
that space) even without special knowledge of Python. In addition to this, by using the memory event detect function
provided by DrivExpress, things like MSI event handling can be written into the Python scripts in a similar fashion to
writing actual interrupt handlers in software.

Python Script Example:

pcie = PcieRootComplex() # Create instance of PCIe Root Complex

Access to congiguration space registers
pcie.cfg_read16(VENDOR_ID, 0x1172)
pcie.cfg_read16(DEVICE_ID, 0x0004)
pcie.cfg_write32(BAR0, BASE_ADDR_MEM)
pcie.cfg_write32(BAR2, BASE_ADDR_REG)
pcie.cfg_write16(COMMAND, PERR_RESPONSE | BUS_MASTER_ENABLE | MEM_SPACE_ENABLE)

Access to Memory Mapped DMA regsiters
pcie.mem_write32(DMAR_CNTL_REG, DMA_DESC_COUNT)
pcie.mem_write32(DMAR_DESC_ADDR_HI_REG, DMAR_DESC_ADDR >> 32)
pcie.mem_write32(DMAR_DESC_ADDR_LO_REG, DMAR_DESC_ADDR & 0xFFFFFFFF)

4 Design Under Test

4 Chapter 1. What is DrivExpress

DrivExpress DPI Library, Version 1.0

Figure 1.2: DrivExpress Verification Environment Image

1.2. Simulation Environment 5

DrivExpress DPI Library, Version 1.0

1.3 References

DrivExpress is a verification tool for PCI Express Endpoint FPGA designs integrated with ALTERA PCI Express IP. It
is used with the Mentor family of Verilog simulators. Users should ideally have a working knowledge of the simulator
as well as the PCI Express specification and ALTERA PCI Express IP. For issues relating to the Verilog simulator,
please refer to the manual accompanying that product. For PCI Express-related questions, the following documents
may be useful for reference.

• PCI Express® Base Specification Revision 2.1

• PHY Interface for the PCI Express™ (PIPE) Architecture Version 1.00

• ALTERA® IP Compiler for PCI Express User Guide

For Python-related issues, online documents provided and maintained by the Python Software Foundation may be
helpful.

• http://docs.python.org/

6 Chapter 1. What is DrivExpress

http://docs.python.org/

CHAPTER

TWO

TUTORIAL

In this chapter, we create a design (DUT) that integrates a DMA controller with the ALTERA PCI Express IP. After this
we provide step-by-step instructions on how to write a test script for the design using DrivExpress Python commands,
and then describe how to run the Verilog simulation using ModelSim.

Note that this design represents a fairly complex system which exercises many of the DrivExpress features. Once a
user has mastered the steps required to build and operate the tutorial design, almost any other DrivExpress project can
be built easily.

The following diagram show the simulation model environment used in this tutorial.

Figure 2.1: Simulation model environment used in this tutorial

7

DrivExpress DPI Library, Version 1.0

PCI Express Chaining DMA Controller (DUT)

The DUT in this tutorial is a DMA controller integrated with the ALTERA PCI Express IP. It consists of
32KB of internal memory and DMA registers. These are mapped to PCI memory space, which is 0x10000000-
0x10007FFF and 0x20000000-0x200000FF respectively. This is controlled by DrivExpress.

PCI Express Root Complex Model

The PCI Express Root Complex controls the DUT. It is connected to the DUT through the PIPE interface a and
performs PCI configuration accesses and memory accesses to the DUT.

a PHY Interface for the PCI Express™ Architecture

Main Memory for DMA Transfers (Host Memory Class for DMA)

This is a buffer on host memory. It is mapped to PCI memory space 0x00000000-0x0000FFFF (64KB) as a part
of host memory and used as the source or destination for the DMA transfers to/from the DUT.

Main Memory for Interrupt Messages (Host Memory Class for MSI)

This is a memory area for receiving Message Signal Interrupts. It is mapped to PCI memory space 0xFFFFFFF0-
0xFFFFFFFF (16 bytes) as part of host memory. DrivExpress controls DUT and lets it issue MSI’s to this area.

Note:

1. Linux notation for the directory path or command is described in this manual. Please change to the correspond-
ing commands if using Windows.

2. Install directory for DrivExpress is expressed as $DRIVEXPRESS_ROOTDIR .

3. Install directory for ALTERA Quartus® II is expressed as $QUARTUS_ROOTDIR .

4. All commands start with the symbol $. In cases where a command line example is longer than effective area
of the example, no $ is shown on subsequent lines and those lines continue below. For example, the following
command is used to change directory.

$ cd $DRIVEXPRESS_ROOTDIR/sample/design/gen2x4/pcie_proj_examples/chaining_dma
/drivexpress_tb

5. This tutorial uses one of the sample scripts located in
$DRIVEXPRESS_ROOTDIR/sample/design/script directory. The file name of the script is
test_main_tutorial.py . In addition, a TCL script to run the Verilog simulation automatically is
located in $DRIVEXPRESS_ROOTDIR/sample/design/build_run.do. The following steps run
test_main_tutorial.py using the build_run.do file.

$ cd $DRIVEXPRESS_ROOTDIR/sample/script
$ mv test_main.py test_main_sample.py
$ mv test_main_tutorial.py test_main.py
$ cd $DRIVEXPRESS_ROOTDIR/sample/design
$ vsim < build_run.do

For more information about the build_run.do file, please refer to ” About the automatic TCL script ”.

8 Chapter 2. Tutorial

DrivExpress DPI Library, Version 1.0

2.1 Making the DUT

The first step is to make the PCI Express Chaining DMA controller DUT. This design is generated using the ALTERA
Quartus II MegaWizard Plug-in Manager tool. The MegaWizard not only generates a PCI Express IP core, but also
creates an example design and simple testbench (that we will replace with DrivExpress) that uses the IP core. This
tutorial takes advantage of the generated example design.

Note that this step and the next is performed automatically by the build_run.do TCL file included in the DrivEx-
press installation. These steps are described here so the user can get a better idea of how the DrivExpress examples
are executed and as an example of how one might set up their simulation environment to include DrivExpress.

A top level IP file has been provided in the DrivExpress installation for several PCI Express configurations. The
MegaWizard will open the top level file, which contains the configuration information and generate all the supporting
files needed by the IP core, as well as examples used here.

To begin, in Quartus start the MegaWizard Plug-in Manager from the “Tools” menu, or execute the qmegawiz
command located in the $QUARTUS_ROOTDIR/bin directory. Once the MegaWizard Plug-in Manager window is
displayed, select “Edit an existing custom megafunction variation” and click the Next button.

2.1. Making the DUT 9

DrivExpress DPI Library, Version 1.0

In the next window, specify the sample MegaWizard configuration 1 file provided by the DrivExpress installation. In
the following example, although the PCI Express Gen2 x4 has been selected, another design, such as Gen1 x1 can be
specified. After selecting the file, click the Next button.

When the IP Compiler for PCI Express window is displayed, click the Finish button, and the generation process for
the design will start.

1 $DRIVEXPRESS_ROOTDIR/sample/design/gen2x4/pcie_proj.v

10 Chapter 2. Tutorial

DrivExpress DPI Library, Version 1.0

Click the Exit button once generation has completed.

The pcie_proj_examples/chaining_dma directory should have been generated in the the directory you se-
lected (for example, in $DRIVEXPRESS_ROOTDIR/sample/design/gen2x4/). This /chaining_dma di-
rectory contains the files used as the DUT in this tutorial. It contains an example design using the PCIe IP core
configuration generated by the MegaWizard. The ALTERA MegaWizard also creates a Verilog-based testbench for
the design that will be replaced with DrivExpress.

Please refer to “Chapter 15: Testbench and Design Example” of ALTERA® IP Compiler for PCI Express User Guide
for more information about the Chaining DMA controller used as the DUT in this tutorial.

2.1. Making the DUT 11

DrivExpress DPI Library, Version 1.0

2.2 Making The Test Environment

The next task is to compile the DUT design and testbench file so the Verilog simulation can be run.

Create the simulation execution directory drivexpress_tb in the DUT’s
pcie_proj_examples/chaining_dma directory and copy the following files to there.

• All Verilog files in pcie_proj_examples/chaining_dma/testbench directory

• The DrivExpress testbench Verilog file

• The Verilog file which instantiates the DrivExpress Verilog shell module

• The DrivExpress license file

Note:

1. The testbench Verilog file for the simulation drvex_tb.v should be selected suitably based on the number of
PCI Express lanes on the DUT.

For example, select $DRIVEXPRESS_ROOTDIR/sample/design/x4/drvex_tb.v for a DUT that has
a x4 lane configuration.

2. The Verilog shell file is located in $DRIVEXPRESS_ROOTDIR/lib directory.

3. The DrivExpress license file should be obtained separately because it is not installed automatically. If you don’t
have a license file, please sign up to receive it at DrivExpress License Request Form . In this tutorial, it is
supposed that the license file is in $DRIVEXPRESS_ROOTDIR directory.

The command example for Gen2 x4 DUT design is shown below.

$ cd $DRIVEXPRESS_ROOTDIR/sample/design/gen2x4/pcie_proj_examples/chaining_dma
$ mkdir drivexpress_tb
$ cp ./testbench/*.v drivexpress_tb
$ cp $DRIVEXPRESS_ROOTDIR/sample/design/x4/drvex_tb.v drivexpress_tb
$ cp $DRIVEXPRESS_ROOTDIR/lib/pcie_pipe_dpi_shell.v drivexpress_tb
$ cp $DRIVEXPRESS_ROOTDIR/drivexpress_lic_enc.bin drivexpress_tb

12 Chapter 2. Tutorial

http://www.macnica-na.com/web/americas/drivexpress-license

DrivExpress DPI Library, Version 1.0

If your Verilog simulator is not an ALTERA edition (ModelSim-ALTERA Edition or ModelSim-ALTERA Starter Edi-
tion), it is necessary to compile libraries for the ALTERA device. If that is the case, execute the following commands.
Users, using an ALTERA edition simulator can skip this step.

$ cd $DRIVEXPRESS_ROOTDIR/sample/design/gen2x4/pcie_proj_examples/chaining_dma
/drivexpress_tb

$ vlib altera_mf_ver
$ vlib lpm_ver
$ vlib sgate_ver
$ vlib stratixiv_hssi_ver
$ vlib stratixiv_pcie_hip_ver
$ vlog $QUARTUS_ROOTDIR/eda/sim_lib/altera_mf.v -work altera_mf_ver
$ vlog $QUARTUS_ROOTDIR/eda/sim_lib/220model.v -work lpm_ver
$ vlog $QUARTUS_ROOTDIR/eda/sim_lib/sgate.v -work sgate_ver
$ vlog $QUARTUS_ROOTDIR/eda/sim_lib/stratixiv_hssi_atoms.v -work stratixiv_hssi_ver
$ vlog $QUARTUS_ROOTDIR/eda/sim_lib/stratixiv_pcie_hip_atoms.v -work

stratixiv_pcie_hip_ver

Compile the Verilog files for DrivExpress and DUT design as follows.

$ cd $DRIVEXPRESS_ROOTDIR/sample/design/gen2x4/pcie_proj_examples/chaining_dma
/drivexpress_tb

$ vlib work
$ vlog -sv -work work ./drvex_tb.v
$ vlog -sv -work work ./pcie_pipe_dpi_shell.v
$ vlog -sv -work work

+incdir+../../common/testbench/+../../common/incremental_compile_module+..
-f ../testbench/sim_filelist

The final vlog command compiles a list of files required by the DUT. This list is kept in a file that was created by the
MegaWizard when it generated the rest of the design example being used at the DUT.

Now the environment is ready for the simulation to be run.

2.2. Making The Test Environment 13

DrivExpress DPI Library, Version 1.0

2.3 Writing A Test Script (Part 1)

Before writing test script, it is important to get an understanding of when that script is read and when the commands
are executed during the Verilog simulation process.

At the beginning of the Verilog simulation, the test_main.py file located in the simulation running directory is
loaded. The built-in Python interpreter interprets the contents of the test_main.py file and pushes some commands
provided by DrivExpress to the internal command queue. After that, those commands are popped from the queue and
executed as simulation time advances. In practice, a Verilog clock signal is connected to the queue and each command
in the queue is retrieved and executed with every command clock tick.

DrivExpress provides three Python classes which are the Root Complex class, the Host Memory class, and the Simu-
lation control class. By using these three classes, the DUT can be controlled.

2.3.1 Creating The Simulation Model

Create a new file called test_main.py and write the following code in it.

Line Numbers 1-8 (test_main.py)

1 from dxpress import *
2

3 sim = SimControl() # Create simulation control instance
4 pcie = PcieRootComplex() # Create PCIe RC instance
5 dma_hmem = HostMemory(0x00000000, 0x0000FFFF) # Create DMA memory buffer
6 msi_area = HostMemory(0xFFFFFFF0, 0xFFFFFFFF) # Create MSI memory area
7

8 sim.log_file("drivexpress.log") # log file for DrivExpress message output

First line is required by Python to load the DrivExpress functions. Please always include it as-is.

At line number 3, the first instance of the Simulation Control class is created by and named sim. Because users can
create only one instance of the Simulation Control class, it is usually created at the top of the test_main.py file.

From line numbers 4 to 6, simulation models used in this tutorial are created. At line number 4, the Root Complex
model is created and named pcie. At line number 5, a Host Memory model for the DMA buffer is created and located
at memory area 0x00000000-0x0000FFFF. It is named dma_hmem. At line number 6, a Host Memory model for the
MSI buffer is created and located at memory area 0xFFFFFFF0-0xFFFFFFFF. It is named msi_area.

At this point, all the simulation models explained at the beginning of this chapter have been created.

At line number 8, the log file in which DrivExpress messages are written is specified.

Each class of DrivExpress provides commands and parameters. In the normal object-oriented convention, when ex-
ecuting or setting these, the command name or parameter name is put after the class instance name separated by a
period. So, in this case, line number 8 is executing the log_file() command of the Simulation Control class
instance sim.

14 Chapter 2. Tutorial

DrivExpress DPI Library, Version 1.0

Note:

1. All commands and parameters bond with a class instance. For example, the following two commands are
completely different although using same command write8(0, 0xFF).

dma_hmem.write8(0, 0xFF) # Write 8bit data 0xFF to offset address 0 of dma_hmem
msi_area.write8(0, 0xFF) # Write 8bit data 0xFF to offset address 0 of msi_area

It means that first write8() command is writing 0xFF data to offset address 0 of dma_hmem (0x00000000-
0x0000FFFF) and second write8() command is writing 0xFF data to offset address 0 of msi_area
(0xFFFFFFF0-0xFFFFFFFF). Those are corresponding with writing to absolute address 0x00000000 and
0xFFFFFFF0 respectively.

2. With respect to the terms “command” and “parameter”, although these are normally called “method” and “at-
tribute” respectively from the point of view of the Python language, the terms “command” and “parameter” are
used on purpose because it is easier to understand for those users of DrivExpress not familiar with Python.

2.3.2 Access to Configuration Registers

The next step is setting the PCI configuration registers on the DUT. Please add the following code.

Line Numbers 10-31 (test_main.py)

1 pcie.link_event_wait(LINK_READY) # Waits until PCIe Link is ready
2

3 # Check VENDOR and DEVICE ID
4 pcie.cfg_read16(VENDOR_ID, 0x1172)
5 pcie.cfg_read16(DEVICE_ID, 0x0004)
6

7 # Set BAR0 and BAR2 configration register of DUT
8 pcie.cfg_write32(BAR2, 0x20000000)
9 pcie.completion_wait() # Wait for completion for first config write TLP

10 pcie.cfg_write32(BAR0, 0x10000000)
11

12 # MSI settings for DUT
13 pcie.cfg_write32(MSI_MSG_ADDRESS, 0xFFFFFFF0)
14 pcie.cfg_write16(MSI_MSG_DATA, 0x55AA)
15 pcie.cfg_write16(MSI_MSG_CONTROL, MSI_ENABLE)
16

17 # Enable Bus Master function and Memory space
18 pcie.cfg_write16(COMMAND, (PERR_RESPONSE |
19 BUS_MASTER_ENABLE |
20 MEM_SPACE_ENABLE))
21

22 pcie.completion_wait() # Wait for completion for configration access

At line number 1 (corresponding to line number 10 of test_main.py) of above code block, the Root Complex
pcie is waiting until link is ready.

At line number 4 and 5, the Root Complex is reading data from the Vendor ID and Device ID configuration registers.
In this case, 0x1172 and 0x0004 are passed to the read16() command respectively. Those values are the expected
results from the read, and an error message is displayed during Verilog simulation if actual value returned is different
from the expected value.

2.3. Writing A Test Script (Part 1) 15

DrivExpress DPI Library, Version 1.0

At line number 8, DMA registers of the DUT are mapped to PCI memory space by writing memory address to the
Base Address Register 2 configuration register.

At line number 9, the Root Complex waits for the completion of first PCI configuration write cycle. Because the
completion ID of DUT will change during the first configuration write cycle, waiting for the completion TLP with
new completion ID is necessary.

At line number 10, 32KB of internal memory of DUT is mapped to PCI memory space 0x10000000-0x10007FFF by
writing to the Base Address Register 0 configuration register.

From line number 13 to 15, address and data of MSI are set. Actually, MSI registers are set so that the DUT will write
the value 0x55AA to memory address 0xFFFFFFF0.

From line number 18 to 20, the command register is set so that bus master and memory address decode functions of
DUT are enabled.

At line number 22, Root Complex is waiting for all configuration write commands (after line number 10) to complete.
At this point the minimum settings for operation of this DUT have been completed and we can access the DUT’s DMA
registers and 32KB internal memory.

16 Chapter 2. Tutorial

DrivExpress DPI Library, Version 1.0

2.4 Running The Verilog Simulation

Although we just set some configuration registers in the DUT, let’s run the Verilog simulation for the code so far.

Put the following code at the bottom of the file test_main.py and save it. After that, copy the test_main.py
file to the simulation directory drivexpress_tb.

Line Numbers 33-34 (test_main.py)

sim.stats() # Display simulation result stats
sim.quit() # Finish simulation

The stats() command displays DrivExpress message statistics from the simulation. The quit() command in-
structs the simulator to end the simulation.

To run the simulation, execute the following command under the drivexpress_tb directory. The command line-
based method is used here to run. Alternately, the simulation can be run by typing the same command into the
command window of the GUI. Please refer to the accompanying manual to your simulator for details.

Linux OS

$ vsim -sv_lib $DRIVEXPRESS_ROOTDIR/lib/libdxpress -L altera_mf_ver -L lpm_ver
-L sgate_ver -L stratixiv_hssi_ver -L stratixiv_pcie_hip_ver -noimmedca -t ps
-novopt drvex_tb -do "run -all"

Windows OS

$ vsim -sv_lib $DRIVEXPRESS_ROOTDIR/lib/dxpress10 -L altera_mf_ver -L lpm_ver
-L sgate_ver -L stratixiv_hssi_ver -L stratixiv_pcie_hip_ver -noimmedca -t ps
-novopt drvex_tb -do "run -all"

If you can run the simulation, each command will be executed and the corresponding DrivExpress message will appear.
Finally, the simulation result will be displayed by the stats() command. Also all DrivExpress messages will be
written to the drivexpress.log file.

DRIVEXPRESS TEST RESULT <PASSED>

Total Errors : 0
Total Warnings : 0
Total Informations : 229

Run the simulation again after changing the expected value for Vendor ID register from 0x1172 to 0x1173. Because
the actual read data is 0x1172, the following error message will be displayed.

DrivExpress !ERR from PCIe TL > Time 16438.000000: Completion for Config Read TLP,
Address:000, Expected:1173, Mask:FFFF, Actual:1172

Hopefully this gives you some understanding about how to verify a DUT by using DrivEpxress. In the next section,
we will set up and use the DMA controller.

2.4. Running The Verilog Simulation 17

DrivExpress DPI Library, Version 1.0

2.5 Writing A Test Script (Part 2)

In this section, we will write the code for accessing the DUT’s internal memory and DMA registers. Please delete the
stats() and quit() commands added in the previous section.

It is convenient when writing a script to define certain address and bit location for the DMA registers. Please add the
following code. Because we set 0x20000000 as the base address of the DMA registers in section titled “Writing A Test
Script (Part 1)”, each register is defined based on this address.

Line Number 33-57 (test_main.py)

1 #==
2 # Chaining DMA Controller Definition
3 #==
4 BASE_ADDR_REG = 0x20000000 # Base address of DMA registers
5 DMAW_CNTL_REG = BASE_ADDR_REG + 0x00
6 DMAW_DESC_ADDR_HI_REG = BASE_ADDR_REG + 0x04
7 DMAW_DESC_ADDR_LO_REG = BASE_ADDR_REG + 0x08
8 DMAW_RCLAST_INDEX_REG = BASE_ADDR_REG + 0x0C
9 DMAR_CNTL_REG = BASE_ADDR_REG + 0x10

10 DMAR_DESC_ADDR_HI_REG = BASE_ADDR_REG + 0x14
11 DMAR_DESC_ADDR_LO_REG = BASE_ADDR_REG + 0x18
12 DMAR_RCLAST_INDEX_REG = BASE_ADDR_REG + 0x1C
13 DMAW_STATUS_HI_REG = BASE_ADDR_REG + 0x20
14 DMAW_STATUS_LO_REG = BASE_ADDR_REG + 0x24
15 DMAR_STATUS_HI_REG = BASE_ADDR_REG + 0x28
16 DMAR_STATUS_LO_REG = BASE_ADDR_REG + 0x2C
17 DMA_ERROR_REG = BASE_ADDR_REG + 0x30
18

19 # DMA Control Register bit value
20 MSI_ENA = 0x00020000
21 EPLAST_ENA = 0x00040000
22

23 # DMA Descriptor
24 DMA_DESC_MSI_ENA = 0x00010000
25 DMA_DESC_EPLAST_ENA = 0x00020000

2.5.1 MSI Interrupt Handling

Before starting the DMA transfer, it is necessary to define and register two functions: the MSI checker function and
the MSI handler function. The MSI handler function is called asynchronously from within DrivExpress when an MSI
event occurs, so this kind of function is called an event callback function or callback function.

18 Chapter 2. Tutorial

DrivExpress DPI Library, Version 1.0

Please add the following code.

Line Numbers 59-79 (test_main.py)

1 #==
2 # DMA Interrupt Handler
3 #==
4 # DMA Event Detector
5 def dma_event(time, rw, addr, data):
6 if (msi_area.iread16(0) == 0x55AA): return True
7 else: return False
8

9 # DMA Interrupt Handler
10 def dma_handler():
11 sim.imsg("\n\n################################## "
12 "DMA INTERRUPT"
13 " ##################################\n\n")
14 # disable event not to call by future MSI event
15 msi_area.disable_event(ev_dma)
16 msi_area.iwrite16(0, 0x0000) # clear MSI message
17 # clear DMA control regsiter
18 pcie.mem_write32(DMAW_CNTL_REG, 0x0000FFFF)
19

20 # Register DMA Interupt Handler (not enabled yet)
21 ev_dma = msi_area.event_callback(dma_event, dma_handler)

At line number 21 (corresponding to line number 79 of test_main.py file) of the above code block, the MSI
checker and handler functions are registered. Please note that the event_callback() command is bonded to
the msi_area. The registered event check function dma_event() is only called for access to 0xFFFFFFF0-
0xFFFFFFFF because of this bonding with msi_area. Each time an event occurs in this memory area, the event
check function runs to determine if the registered event has occurred. In this case if an MSI event has occurred, the
event check function returns True, thus the callback function dma_handler() is called from within DrivExpress.

Event ID is returned by executing the event_callback() command. By using this event ID, users can disable
the corresponding event_callback() until a certain point in the code or conversely, enable it from a certain
point. By default, event_callback() is disabled, so the event check function is never called even if an access
to the msi_area occurs. In the next code block, the event_callback() command is enabled by executing the
enable_event() command just before kicking off a DMA transfer.

From line number 5 to 7, the event check function reads 16-bit data from offset address 0 of msi_area, which
corresponds to absolute address 0xFFFFFFF0, and returns True if the read value is 0x55AA. If you remember, when
the DUT configuration registers were set, an MSI event was defined as a write access to address 0xFFFFFFF0 with
the data 0x55AA, thus the dma_event() function is checking for an MSI interrupt.

When reading first address of msi_area in the event check function, the iread() was used, not the read()
command. A command with the leading character i is called an immediate command or icommand for short. The
icommand is not pushed into the internal DrivExpress command queue of and it is executed instantly when interpreted
by the built-in Python interpreter. Therefore, an icommand does not consume Verilog simulation time. Using an
icommand for processing independent of simulation time, simulation will be much faster than the case of a queued
command and also allows for checks that don’t make sense as queued commands.

Note: As a matter of fact, any queued type command cannot be used in event check function. On the other hand, you
can use both types of commands in a callback function.

2.5. Writing A Test Script (Part 2) 19

DrivExpress DPI Library, Version 1.0

From line number 10 to 18, the event callback function disables the event_callback() command by executing
disable_event() and clears the first 16-bits of msi_area for the next MSI detection. After that, it clears the
DMA control register of DUT using the mem_write32() command of Root Complex.

2.5.2 Preparation for the DMA transfer

Before starting the DMA transfer, it is necessary to do the following.

1. Setting the DMA registers of the DUT

2. Initialization of the DMA buffer

3. Creating the DMA descriptors

In this tutorial, we make one DMA descriptor which transfers 256 bytes of data from address 0x1000 in the dma_hmem
area to the internal memory of DUT. The DMA descriptor itself will be created in the dma_hmem area. We assign the
first 32 bytes of the dma_hmem area to be the DMA descriptor area.

When building up descriptors, it’s important to understand the perspective that we’re using to formulate addresses. In
this case, both the DMA buffer address in host memory (set in the DMA descriptor) and the DMA descriptor address,
which will be set in the the DMA register of the DUT should use the absolute address of the PCI memory space.
Because dma_hmem is defined as 0x00000000-0x0000FFFF use the absolute address, those addresses are as follows.

• 0x00001000 - Absolute address of DMA buffer on host memory

• 0x00000000 - Absolute address of DMA descriptor

Line Numbers 81-97 (test_main.py)

1 #==
2 # DMA transfer from Host Memory to Device Memory
3 #==
4 # Initialize 256 bytes DMA buffer (0x00001000-0x000010FF) by increment data
5 for i in range(0, 256): dma_hmem.iwrite8(0x1000 + i, i)
6

7 # Set up DMA descriptor (0x00000000-0x0000001F), first 16 bytes are reserved
8 # Transfer 256 bytes(64DW) data from host memory 0x1000 to internal device memory
9 dma_hmem.iwrite32(0x10, (DMA_DESC_EPLAST_ENA | DMA_DESC_MSI_ENA | 64))

10 dma_hmem.iwrite32(0x14, 0) # Internal device memory offset address
11 dma_hmem.iwrite32(0x18, 0) # Upper 32bit address of DMA buffer memory
12 dma_hmem.iwrite32(0x1C, 0x1000) # Lower 32bit address of DMA buffer memory
13

14 # Setup DMA registers
15 pcie.mem_write32(DMAR_CNTL_REG, 1) # DMA Descriptor Count
16 pcie.mem_write32(DMAR_DESC_ADDR_HI_REG, 0) # Upper 32bit address of DMA descriptor
17 pcie.mem_write32(DMAR_DESC_ADDR_LO_REG, 0) # Lower 32bit address of DMA descriptor

At line number 5 (corresponding to line number 85 of test_main.py) of the above code block, 256 bytes data from
offset address 0x1000 of dma_hmem area are initialized as incremental data. We use icommand on purpose here. This
is a time-saving method to improve simulation performance. It would be possible to use the write8() command
instead of iwrite8(); however, that means it takes time to retrieve each command from the queue and execute it
in simulation time for all 256 commands. On the other hand, using iwrite8(), all 256 commands are executed
instantly when interpreted by the built-in Python interpreter and it doesn’t consume simulation time at all. Because the
purpose of the design is to transfer 256 bytes of the incremental data on host memory to internal memory of DUT, it
isn’t meaningful to spend time on the initialization process. It is good practice to use icommands to reduce simulation
overhead for this kind of work (setup that occurs only in the host).

20 Chapter 2. Tutorial

DrivExpress DPI Library, Version 1.0

From line number 9 to 12, the DMA descriptor is created in the 0x10-0x1F area of dma_hmem. In this code, the DMA
transfer count (double word), offset address of DUT internal memory, and absolute address of host memory are set.
Because this process is also independent of simulation time, we use icommand. It is necessary to keep the 0x00-0x0F
area of dma_hmem open because the DUT will use that area during DMA transfer process.

From line number 15 to 17, the DMA descriptor count and absolute address of the DMA descriptor are set in the DMA
registers of DUT. Because DUT is part of the Verilog design, we want these command to be executed in simulation
time (they are access that would really occur across the PCIe link to the DUT registers. For this reason, the Root
Complex model does not support icommands.

Now, it is time to start the DMA transfer.

2.5.3 Starting the DMA transfer and waiting for completion

The remaining tasks are: starting the DMA transfer and checking whether the source data was transferred to the
destination address correctly after completion.

Line Numbers 99-122 (test_main.py)

1 # Enable DMA interrupt event before kicking DMA transfer
2 msi_area.enable_event(ev_dma)
3

4 sim.msg("\n\n%%%%%%%%%%%%%%%%%%%%% "
5 "Start DMA from Host Memory to Device Memory"
6 " %%%%%%%%%%%%%%%%%%%%%\n\n")
7

8 # Kick DMA transfer (from Host Memory to Device Memory)
9 pcie.mem_write32(DMAR_RCLAST_INDEX_REG, 0)

10

11 # Wait until DMA interrupt is processed, or timeout if 100000 clks elapsed
12 msi_area.event_wait(dma_event, 100000)
13

14 # Read and check internal device memory of chaining DMA controller
15 exp_buf = [i for i in range(256)] # Expected data is 256 bytes increment data
16 pcie.mem_read(0x10000000, 256, exp_buf) # Read 256 bytes frominternal device memory
17 pcie.completion_wait()
18

19 sim.msg("\n\n%%%%%%%%%%%%%%%%%%%%% "
20 "DMA from Host Memory to Device Memory Complete"
21 " %%%%%%%%%%%%%%%%%%%%%\n\n")
22

23 sim.stats() # Display simulation result stats
24 sim.quit() # Finish simulation

At line number 2 (corresponding to line number 100 of test_main.py) of above code block, the
event_callback() command for msi_area is enabled. After that, a DMA start message is output and the
DMA transfer is started at line number 9.

If you have other tasks to do after starting the DMA transfer, those tasks would be written in the script. When the DMA
transfer is complete, the registered callback function will be called in mid-flow. This really looks like the behavior of
an interrupt routine.

In this tutorial, however, after starting the DMA transfer, we don’t do anything and just wait for the DMA to com-
plete. The code of at line number 12, which executes the event_wait() command, allow us to wait for that. The
same kind of event check function is used in the event_wait() command here. Although the event_wait()

2.5. Writing A Test Script (Part 2) 21

DrivExpress DPI Library, Version 1.0

command is similar to event_callback() command, there is no callback function and it just waits until the
event check function returns True or a time-out occurs (which is specified as an argument representing command
clocks ticks). In this code example, the registered event check function dma_event() is called only when the
DUT accesses the 0xFFFFFFF0-0xFFFFFFFF area because event_wait() command is bonded to the msi_area.
This behavior is same as the event_callback() command. However, when an event check function returns
True, the event_wait() command just exits whereas a registered callback function is called in the case of a
event_callback() command.

From line number 15 to 17, DrivExpress checks whether the first 256 bytes of internal memory of DUT are filled with
incrementing data as a result of the DMA transfer. At line number 15, 256 bytes of expected data is generated as
incrementing data in the ext_buf list, and then the Root Complex reads 256 bytes data from address 0x10000000,
which is the absolute address of DUT internal memory, by using mem_read() command and checks returned data
is the same as ext_buf. At line number 17, the Root Complex waits for the completion of the mem_read()
command.

From line number 19 to 24, simulation will end after a DMA completion message and the DrivExpress message
statistics for the simulation are output.

With that, we come to the end of this tutorial. Please update test_main.py file and run the simulation again
using “Running The Verilog Simulation” for reference. If there you made no typos, the error count reported by the
DrivExpress message statistics will be zero.

In reality, this kind of script, which waits for the completion of an event does not have to use the
event_callback() command. The code could be simplified to just use the event_wait() command, but
we use both commands on purpose in this tutorial to expose the user to both functions.

One more thing to note: lines 15-17 above would normally be written in a dma_handler() function, corresponding
to an interrupt handler routine. In this case it’s not necessary because we’re not executing other commands while
waiting for the DMA operation to complete.

2.5.4 Non-Posted and Posted

Before ending this tutorial, we should further explain the wait_completion() command which we dared not
explain in detail in the main body of the tutorial in section “Access to Configuration Registers”. PCI Express configu-
ration read/write and memory read requests are called non-posted requests. A Non-posted request defined as a request
that won’t return a completion packet across the PCIe link until the operation has actually completed.

At line number 16 of the above code block, the mem_read() command, which is a non-posted type, issues a memory
read request to the DUT and goes to next command without waiting to receive the corresponding completion packet.
That means comparison with expected data ext_buf is not done when the mem_read() command is initially
executed, but rather is delayed until the completion packet is received.

A wait_completion() command waits for all completion packets to be received for all non-posted commands
already executed. But for the code at line number 17, simulation will end before receiving the completion packets for
mem_read() from line number 16. As a result, comparison with ext_buf will never happen. This is the reason
that we use wait_completion() command at line number 17.

On the other hand, PCI Express memory write requests are called posted requests and no completion packet is returned.
Therefore, it makes no sense to use wait_completion() command for a mem_write() command.

Please refer to PCI Express specification about non-posted and posted requests for more detail.

Tip: Parameter is_completion_wait has a similar function. If this parameter is set to True (Default is False),
non-posted commands supported by DrivExpress do not proceed to the next command until receiving the completion
packet. This is same as executing the wait_completion() command for every non-posted type command.

The following 2 code examples have the same behavior. It is implied that the instance name of the Root Complex is
pcie in the code.

22 Chapter 2. Tutorial

DrivExpress DPI Library, Version 1.0

Waiting for completion example 1

pcie.cfg_read16(VENDOR_ID, 0x1172)
pcie.wait_completion()
pcie.cfg_read16(DEVICE_ID, 0x0004)
pcie.wait_completion()

Waiting for completion example 2

pcie.is_completion_wait = True
pcie.cfg_read16(VENDOR_ID, 0x1172)
pcie.cfg_read16(DEVICE_ID, 0x0004)

2.5. Writing A Test Script (Part 2) 23

DrivExpress DPI Library, Version 1.0

2.6 About the automatic TCL script

Provided in $DRIVEXPRESS_ROOTDIR/sample/design there is a TCL script called build_run.do that
automates the following for the ModelSim family of Verilog simulators.

• Generates PCI Express Gen2 x4 sample DMA controller design by using ALTERA Quartus II tool

• Copies DrivExpress license file and sample test script to Verilog simulation directory 2

• Runs the Verilog simulation

Note:

1. License file must be located in $DRIVEXPRESS_ROOTDIR directory to use build_run.do file.

2. To change PCI Express configuration to Gen2 x8 instead for the sample design, please change the following 2
variables in build_run.do file.

There are two methods to execute the build_run.do TCL script. One method executes it from the “Transcript”
window after starting the ModelSim Verilog simulator in GUI mode. The other method is executing the vsim com-
mand as follows on the command line.

$ cd $DRIVEXPRESS_ROOTDIR/sample/design
$ vsim < build_run.do

The test_main.py file, which is located in $DRIVEXPRESS_ROOTDIR/sample/design/script direc-
tory, is executed during Verilog simulation, In the test_main.py file, test_pcie_chain_dma_*.py files are
called and executed sequentially.

2 $DRIVEXPRESS_ROOTDIR/sample/design/gen2x4/pcie_proj_examples/chaining_dma/drivexpress_tb

24 Chapter 2. Tutorial

CHAPTER

THREE

BEST PRACTICES

In this chapter, explain some basic concepts of DrivExpresswe as well as introduce some techniques for writing test
scripts efficiently.

In addition to this, we will cover some higher level concepts like: the relationship between the PCI Express Transaction
Layer Packet (hereinafter referred to as TLP) and each DrivExpress command, controlling internal FIFO for TLPs in
DrivExpress, and so on.

For FPGA designers and verification engineers who build the test environments, we show how to define DrivExpress
as a Verilog module and how the connection between DUT and DrivExpress module should be done.

For each topic we introduce some sample code examples to help with the explanation. If not otherwise specified, we
assume that Root Complex class and Simulation Control class have been instantiated using the name pcie and sim
respectively.

25

DrivExpress DPI Library, Version 1.0

3.1 Python Classes

DrivExpress provides three Python classes, which are the Root Complex class, the Host Memory class, and the Simu-
lation Control class.

Multiple instances of the Root Complex class and the Simulation Control class is prohibited. On the other hand, users
can create multiple instances of the Host memory class.

Users can choose an instance name for each class freely; however, it is recommended that easy-to-understand name
are used.

As we explained in “Writing A Test Script (Part 1)” of “Tutorial”, each class provides some commands and parameters.
When writing a command or setting a parameter, the command name and parameter name should be separated with a
“.” character after the instance name.

Code examples for each class are as follows.

Root Complex Class

pcie = PcieRootComplex() # Create PCIe Root Complex instance
pcie.is_32bit_address = True # 32-bit address mode
pcie.cfg_read16(VENDOR_ID, 0x1172) # Read Vendor ID, Expected read data is 0x1172
pcie.cfg_write32(BAR0, 0xAAAA0000) # Set Base Address
pcie.mem_write16(0xAAAA0000, 0xFFFF) # Write 0xFFFF data to 0xAAAA0000 address

Host Memory Class

Create DMA read buffer memory instance
Start Address:0x00001000, End Address:0x00001FFF, Initialized by 0x55
dma_rbuf = HostMemory(0x00001000, 0x00001FFF, 0x55) # DMA Read Buffer
Create DMA write buffer memory instance
Start Address:0x00002000, End Address:0x00002FFF, Initialized by 0xAA
dma_wbuf = HostMemory(0x00002000, 0x00002FFF, 0xAA) # DMA Write Buffer
Write 0x11223344 to DMA read buffer offset 0x10 (absolute address 0x00001010)
dma_rbuf.write32(0x10, 0x11223344)
Read from DMA write buffer offset 0x10 (absolute address 0x00002010)
dma_wbuf.read32(0x10, 0x11223344) # Expacted read data is 0x11223344

Simulation Control Class

sim = SimControl() # Create simulation control instance
sim.license_file = "/opt/drivexpress/drivexpress_lic_enc.bin" # Path of license file
sim.msg("Reset DUT") # Print message
sim.reset(10) # Assert reset signal during 10 command clock period

Please refer to “Class References” about commands and parameters provided by each class for more detail.

26 Chapter 3. Best Practices

DrivExpress DPI Library, Version 1.0

3.2 Command Queue and Command Type

The commands provided by DrivExpress are categorized into two types. One is a queue-type command which is
pushed into the command queue when the built-in Python interpreter interprets it. It is executed after some elapsed
time based on the command clock provided in the Verilog testbench. The other is an immediate type command, or
icommand for short, which is executed instantly when interpreted by built-in Python interpreter. For icommands, the
prefix i is put at the beginning of the command name.

3.2.1 Simulation Cost

Because icommands do not consume Verilog simulation time, using icommands in your test script will lead increased
performance of your Verilog simulation. It is recommended to use icommands as often as possible it makes sense, for
example during the initialization of host memory.

Let’s consider this host memory initialization example.

1 buf = HostMemory(0, 0xFFFF) # Instance of 0x00000000-0x0000FFFF address area
2

3 # Initializtaion with incremental data by icommand
4 for i in range (0, 0x7FFF):
5 buf.iwrite8(i, (i & 0xFF))
6

7 # Initializtaion with incremental data by normal (queue-type) command
8 for i in range (0x8000, 0x10000):
9 buf.write8(i, (i & 0xFF))

In the above code block, the 64KB buffer is created in 0x00000000-0x0000FFFF address range and initialized by
incrementing data. The first half of the address range is initialized by using the icommand iwrite8() and second
half of the range is initialized by using normal (queue-type) commands write8().

If the above code block exists in the main script test_main.py file, it is interpreted by the Python interpreter at
simulation time 0. At this time, instantiation of Host Memory class of (line number 1) and initialization of first 32KB
using the icommand iwrite8() are executed without consuming simulation time. This means first half area has
already been initialized by incrementing data at simulation time 0.

On the other hand, initialization of second 32KB has not been done yet. At time 0, all that has been done is to push
the write8() commands into the command queue. In this case, a total of 32K write8() commands are pushed
into the queue because the write8() command is called 32K times in the for loop. Each write8() command is
popped from the queue and executed based on the command execution clock ticks in the simulation. In cases where
command execution clock count parameter is 1 clock cycle and the clock period is 10ns, it takes about 327us of
simulation time (32× 1024× 10 = 327680ns) to process all 32K commands. This isn’t an effective use of simulation
time, so this kind of scripting should be avoided.

It is thus strongly recommended that users make the greatest use of icommands as possible for host memory processing.

3.2.2 Command Execution Order

If an icommand is written after a queue-type command, actual command execution order is different from the order
that commands appear in the script.

When writing a test script for an actual design, there are many scenarios where users would like to write an icommand
after a queue-type command for readability reasons. In those cases, it is very important to understand the command
execution order.

3.2. Command Queue and Command Type 27

DrivExpress DPI Library, Version 1.0

As an example, we’ll use the following code and explain the command execution order. In regard to this example, we
put the icommands behind queue-type commands on purpose so we can explain the command execution order.

1 mem = HostMemory(0x1000, 0x1FFF, 0x00) # Memory instance address 0x1000-0x1FFF
2

3 # Normal (queue-type) command
4 mem.write32(0x8, 0x8899AABB) # Write 0x8899AABB to offset address 0x8 (0x1008)
5 mem.write32(0xC, 0xCCDDEEFF) # Write 0xCCDDEEFF to offset address 0xC (0x100C)
6 mem.read32 (0x0, 0x00112233) # Read 0x00112233 from offset address 0x0 (0x1000)
7 mem.read32 (0x4, 0x44556677) # Read 0x44556677 from offset address 0x4 (0x1004)
8

9 # Immediate type command
10 mem.iwrite32(0x0, 0x00112233) # Write 0x00112233 to offset address 0x0 (0x1000)
11 mem.iwrite32(0x4, 0x44556677) # Write 0x44556677 to offset address 0x4 (0x1004)

If we look at the code above, it appears that mem is instantiated and simultaneously initialized to 0x00 on line 1. Then
after a two writes to addresses 0x8 and 0xC, two read are performed to addresses 0x0 and 0x4 (lines 6 and 7). The
read commands compare the result with the expected values of 0x00112233 and 0x44556677. From first glance, we
would expect an error to be generated because we’d expect the data at these addresses to be the initialization value of
zero, because the only writes performed prior to this are to other addresses (0x8 and 0xC).

In fact, this code does not generate an error. This is because the command order in the script and the actual command
execution order are not the same. The code on line numbers 4 to 7 are only queued and not executed when the code
is interpreted, however, the code on the line numbers 10 and 11 are executed instantly when interpreted. This means
the 32-bit data at offset address 0x0 and 0x4 become 0x00112233 and 0x44556677 respectively at simulation time
0. In cases where command execution clock count parameter is 1 clock and the clock period is 10ns, the code at line
numbers 6 and 7 are executed at simulation time 30ns and 40ns.

Thus be careful about command execution order when writing an icommand after a queue-type command.

Tip:

1. In reality, the Python interpreter can not distinguish between icommand and queue-type command and it only
identifies just a command for both command types. This is because the queueing is the processing of the
command for Python interpreter.

2. Unlike queue-type command, an icommand can return value because it is executed instantly at interpretation.
For example, the iread8() command supported by Host Memory class returns 8-bit data. On the other hand,
the read8() command, which is also supported by the Host Memory class, cannot return data because it is
queue-type command and is not executed when interpreted. Instead, an expected value can be passed to the
read8() command and it will be checked when execution of the command occurs.

28 Chapter 3. Best Practices

DrivExpress DPI Library, Version 1.0

The following figure shows the status of host memory model mem and internal command queue for the above code
example, both at simulation time 0 and after 1 command clock period.

Figure 3.1: Memory and command queue variation during the simulation process

See Also:

Changes command execution interval

3.2. Command Queue and Command Type 29

DrivExpress DPI Library, Version 1.0

3.3 Split of Test Script Files

We will introduce incldue() and run_file() commands of Simulation Control class in this section. By using
these commands, users can split long test scripts into multiple files.

3.3.1 File Expansion

The include() command is same as include function provided by Verilog or C/C++ languages. When a Python
script file name is specified as an argument, that file is expanded at the location that the include() command
is called. The include() command is an icommand. The specified file contents are expanded when the Python
interpreter encounters the include() command. At the same time, the expanded code is also interpreted.

Let’s consider the case which the test_main.py file includes the sub.py file. Each file is shown below.

test_main.py

1 from dxpress import *
2

3 sim = SimControl() # Simulation control instance
4 pcie = PcieRootComplex() # PCIe RC instance
5 mem = HostMemory(0x00, 0xFF, 0x55) # Memory instance address 0x00-0xFF
6

7 pcie.cfg_read16(VENDOR_ID, 0x1172) # Read Vendor ID, Expected read data is 0x1172
8 pcie.cfg_write32(BAR0, 0x10000000) # Set Base Address
9

10 rdata32 = mem.iread32(0)
11 if rdata32 != 0x55555555:
12 print "Initialization Error"
13

14 mem.iwrite32(0, 0xAAAAAAAA)
15

16 sim.include("sub.py") # Expand "sub.py" file here
17 sim.quit() # End of simulation

sub.py

1 rdata16 = mem.iread16(2)
2 if rdata16 != 0xAAAA:
3 print "Write Error"
4

5 mem.iwrite16(4, 0xAAAA)
6

7 pcie.mem_read16 (0x10000000, 0x0000)
8 pcie.mem_write16(0x10000000, 0x55AA)

There is little value in the code itself. The main purpose here is to explain the timing of file expansion and the command
execution order after the expansion.

As described above, the include() command is executed and the file contents are expanded when interpreted. So,
the contents of the sub.py file is directly inserted to the location of include() command of the test_main.py
file.

30 Chapter 3. Best Practices

DrivExpress DPI Library, Version 1.0

The state of the test_main.py file after expanding the sub.py file is as follows.

test_main.py after expansion of sub.py

1 from dxpress import *
2

3 sim = SimControl() # Simulation control instance
4 pcie = PcieRootComplex() # PCIe RC instance
5 mem = HostMemory(0x00, 0xFF, 0x55) # Memory instance address 0x00-0xFF
6

7 pcie.cfg_read16(VENDOR_ID, 0x1172) # Read Vendor ID, Expected read data is 0x1172
8 pcie.cfg_write32(BAR0, 0x10000000) # Set Base Address
9

10 rdata32 = mem.iread32(0)
11 if rdata32 != 0x55555555:
12 print "Initialization Error"
13

14 mem.iwrite32(0, 0xAAAAAAAA)
15

16 rdata16 = mem.iread16(2)
17 if rdata16 != 0xAAAA:
18 print "Write Error"
19

20 mem.iwrite16(4, 0xAAAA)
21

22 pcie.mem_read16 (0x10000000, 0x0000)
23 pcie.mem_write16(0x10000000, 0x55AA)
24 sim.quit() # End of simulation

Let’s consider the command execution order of the above code block.

An instantiation of each class, icommand, and Python code itself are executed at simulation time 0. The execution
order of those are same as the order written. So, the class instantiations on line numbers 3 to 5 are followed by the
processing of icommands on line numbers 10 to 20.

The code on lines 7 to 8 and lines 22 to 24 are all queue-type commands. Those are queued in the order of the
appearance and executed later on a first-queued-first-serve basis.

3.3. Split of Test Script Files 31

DrivExpress DPI Library, Version 1.0

The following figure shows the state of command queue and the command execution order for the above example.

Figure 3.2: Expansion using the include() command and command execution order

3.3.2 File Execution

The other command run_file() is not an icommand but queue-type command. Because of that, the interpretation
of the file specified by the run_file() command is delayed until it is popped from queue and executed.

Let’s consider this by using same files test_main.py and sub.py used in the previous sub-section “File Expan-
sion”. The only difference is the use of the run_file() command instead of the include() command.

test_main.py

1 from dxpress import *
2

3 sim = SimControl() # Simulation control instance
4 pcie = PcieRootComplex() # PCIe RC instance
5 mem = HostMemory(0x00, 0xFF, 0x55) # Memory instance address 0x00-0xFF
6

7 pcie.cfg_read16(VENDOR_ID, 0x1172) # Read Vendor ID, Expected read data is 0x1172
8 pcie.cfg_write32(BAR0, 0x10000000) # Set Base Address
9

10 rdata32 = mem.iread32(0)
11 if rdata32 != 0x55555555:
12 print "Initialization Error"
13

14 mem.iwrite32(0, 0xAAAAAAAA)
15

16 sim.run_file("sub.py") # Execute "sub.py" file here
17 sim.quit() # End of simulation

32 Chapter 3. Best Practices

DrivExpress DPI Library, Version 1.0

sub.py

1 rdata16 = mem.iread16(2)
2 if rdata16 != 0xAAAA:
3 print "Write Error"
4

5 mem.iwrite16(4, 0xAAAA)
6

7 pcie.mem_read16 (0x10000000, 0x0000)
8 pcie.mem_write16(0x10000000, 0x55AA)

When the Python interpreter interprets the test_main.py file initially, the run_file() command is just
queued and the file specified as an argument is not interpreted immediately. Therefore, only the icommands in the
test_main.py file are executed at simulation time 0. The execution of sub.py files’ icommand is delayed until
the run_file() command is popped from the queue.

With respect to queue-type commands in the sub.py file, they are queued when the run_file command is exe-
cuted. The queue used for these commands is different from the one used by the test_main.py file. It is dedicated
to the sub.py file and managed separately from the one used by the test_main.py file. The command queue
specific to the sub.py file completely consumed during the execution of the run_file() command. Because the
run_file() command does not return until all queue-type commands of the sub.py file are executed, the queue
belonging to test_main.py stays at the run_file() command position during execution of the entire sub.py
file and all the sub.py queue contents.

Let’s consider the command execution order of the test_main.py and sub.py files.

At first an instantiation of each class, icommand, and Python code of the test_main.py file are executed at simula-
tion time 0. More precisely, the class instantiations on line numbers 3 to 5 and the code block including the icommands
on line numbers 10 to 14 are executed at simulation time 0.

The other commands: two PCI configuration access commands on line numbers 7 to 8 and the run_file() and
quit() commands on line numbers 16 to 17 are queued in the order of appearance. After that, each command
is popped from the queue and executed with every passing tick of the command execution clock. In other words,
the cfg_read16() , cfg_write32(), run_file(), and quit() commands are executed in that order, as
simulation time passes.

The interpretation of the sub.py file is done when executing the run_file() command, and the code block
including the icommands on line numbers 1 to 5 are executed at the same time. The other commands: two PCI memory
access commands on line numbers 7 to 8 are queued into the dedicated queue for the sub.py file and are executed
with every passing tick of command execution clock. After executing the mem_write16() command, the queue
belonging to the sub.py file is empty and the run_file() command finishes. Finally, the quit() command is
popped from the queue of the test_main.py file and executed. As a result of execution of the quit() command,
simulation ends.

3.3. Split of Test Script Files 33

DrivExpress DPI Library, Version 1.0

The following figure shows the state of both command queues and the command execution order for the above exam-
ple.

Figure 3.3: Command execution order of the run_file() command

34 Chapter 3. Best Practices

DrivExpress DPI Library, Version 1.0

3.4 Delayed Execution

Not only icommands but also parameters provided by each class are executed instantly when interpreted. There are a lot
of situations for users to delay the execution of these when writing test scripts. We can provide this delay by using the
run_file() command, as explained in the previous sub-section “File Execution”. However, it is not recommended
to use the run_file() command to delay just one icommand or parameter because it negatively impacts readability.
As an alternative, we will introduce another method of delaying code by using the run_string() command.

3.4.1 Delayed Parameter Setting

The Root Complex class provides the is_64bit_address parameter which is used to access a device mapped to
a 64-bit PCI memory space. Now, let us assume that two devices have been mapped to PCI memory space and one of
them can only be mapped to a 64-bit address host. We call these two devices as DEV32 and DEV64 respectively here.
We’ll assume that DEV32 has been mapped to the 32-bit address 0xFFFF0000 and DEV64 has been mapped to the
64-bit address 0x10000000FFFF0000.

Let’s consider the following sequence.

1. Write to DEV32

2. Write to DEV64

3. Write to DEV32 again

If we write the code for above sequence in a straight forward manner, it will look as follows.

1 DEV32 = 0xFFFF0000
2 DEV64 = 0x10000000FFFF0000
3

4 pcie.mem_write32(DEV32, 0x32323232)
5

6 pcie.is_64bit_address = True # 64-bit memory access mode
7 pcie.mem_write32(DEV64, 0x64646464)
8 pcie.is_64bit_address = False # 32-bit memory access mode
9

10 pcie.mem_write32(DEV32, 0x32323232)

This code looks fine on the surface, but it doesn’t actually work. The reason for this is the instant execution of the
is_64bit_address parameter setting. At line number 6, the 64-bit address feature is enabled, but the code on
line number 8 is executed at the same simulation time. As a result, the 64-bit address feature is disabled right after it’s
enabled. Because the three mem_write32() commands are pushed into the queue, they are executed after all three
is_64bit_address parameter settings, which means the 64-bit address feature is turned off (line 8), so the write
command on line 7 is not a 64-bit access, but rather a 32-bit memory write access which destination address is lower
32-bit of DEV64 address (0xFFFF0000) because upper 32-bit is cut off. This will lead to unexpected results because
the access to DEV64 changes to an access to DEV32 despite the user’s intentions.

Although we can move lines 6 to 7 and the lines 8 to 10 to another file respectively and use the run_file()
command to execute those files, it is not good practice because this tiny example of code would then be split in 3
different files and the readability gets pretty bad. A more complex file would become unmanageable.

In this case, using run_string() command is a better option. To use the run_string() command, the
user passes a string containing the Python code they want to execute as an argument to the command. Because
run_string() is queue-type command, the interpretation of the code string is delayed until the run_string()
command is popped from queue and executed.

3.4. Delayed Execution 35

DrivExpress DPI Library, Version 1.0

The modified code using the run_string() command is as follows.

1 DEV32 = 0xFFFF0000
2 DEV64 = 0x10000000FFFF0000
3

4 pcie.mem_write32(DEV32, 0x32323232)
5

6 sim.run_string("pcie.is_64bit_address = True") # 64bit memory access mode
7 pcie.mem_write32(DEV64, 0x64646464)
8 sim.run_string("pcie.is_64bit_address = False") # 32bit memory access mode
9

10 pcie.mem_write32(DEV32, 0x32323232)

By using run_string() command, the code on lines 4 to 10 are executed in the order written.

3.4.2 Delayed Function Execution

As described above, run_string() command can execute the specified string as Python code. Now, let’s consider
the case of delaying multiple lines of code.

Depending on the contents, it will often be good practice to use the run_file() command. However, if you desire
to have all the code in one files, this method cannot be used. If there are a lot of commands or a long code string,
the run_string() command should also be avoided mainly for readability reasons. Multiple run_string()
commands are also not desirable.

This situation can be handled by skillfully writing the code block in a Python function and specifying the function as
an argument of the run_string() command.

A code example of this follows. We assume that a 64KB size Host Memory class has been instantiated and called
mem64k.

Initialize 64KB size memory by 0x55 data
def init_mem64k():

for i in range(0, 0xFFFF):
mem64k.iwrite8(i, 0x55)

Call init_mem64k() function
sim.run_string("init_mem64k()")

Please note that it requires an enormous amount of time to handle the function init_mem64k() in simulation if the
write8() command is used by mistake, instead of the iwrite8() command (about 655us when the command
clock count is set to 1 and a 10ns command clock period). That is an enormous amount of time in the simulation
world (may take hours for a large design to simulate that long), although it is the blink of an eye in the real world. On
the other hand, the cost of using run_string(), which calls a function using a lot of icommands, is just 10ns of
simulation time. It goes without saying which is the better solution.

36 Chapter 3. Best Practices

DrivExpress DPI Library, Version 1.0

3.5 PCI Express Commands and TLPs

The number of configuration access commands and memory access commands provided by Root Complex class totals
fourteen and is shown below.

1 cfg_read8() Byte read from configuration space
2 cfg_read16() Word read from configuration space
3 cfg_read32() Double word read from configuration space
4 cfg_write8() Byte write to configuration space
5 cfg_write16() Word write to configuration space
6 cfg_write32() Double word write to configuration space
7 mem_read() Any byte length read from memory space
8 mem_read8() Byte read from memory space
9 mem_read16() Word read from memory space

10 mem_read32() Double word read from memory space
11 mem_write() Any byte length write to memory space
12 mem_write8() Byte write to memory space
13 mem_write16() Word write to memory space
14 mem_write32() Double word write to memory space

Every one of these commands except mem_read() and mem_write() result in exactly one TLP issued to the PCI
Express Endpoint device (here after referred to as Endpoint device, Endpoint, or DUT).

3.5.1 Split by Max Payload Size

According to the PCI Express specification, a memory TLP which is larger than the max payload size can not be
issued. Because of this, the number of TLPs generated for mem_read() or mem_write() depends on the read or
write size (specified as an argument) and the max payload size. For example, when the max payload size is the default
value of 128 bytes, the following code issues a total of four memory TLPs to the DUT.

buf = [i for i in range(256)] # 256 bytes increment data(0, 1, 2, 3, ... ,255)

Access to 0x20000000 memory address area
pcie.mem_write(0x20000000, 256, buf) # write 256 bytes increment data
pcie.mem_read (0x20000000, 256, buf) # read 256 bytes increment data

Two memory write TLPs are issued for first mem_write() command.

• 128 bytes memory write TLP for address 0x20000000 (Write Data: 0x00 to 0x7F)

• 128 bytes memory write TLP for address 0x20000080 (Write Data: 0x80 to 0xFF)

Two memory read TLPs are issued for next mem_read() command.

• 128 bytes memory read TLP for address 0x20000000 (Expected Read Data: 0x00 to 0x7F)

• 128 bytes memory read TLP for address 0x20000080 (Expected Read Data: 0x80 to 0xFF)

In the case of the mem_read() and mem_write() commands, the byte count specified as an argument is thus
divided by the max payload size, and multiple TLPs are issued to the DUT.

The following is the log output for the above code example. You can see that memory write TLPs and memory read
TLPs are issued twice for each command.

3.5. PCI Express Commands and TLPs 37

DrivExpress DPI Library, Version 1.0

DrivExpress INFO from PCIe TL > Time 16800.000000: Egress Memory Write TLP
===
Transaction Descriptor (ID): 00000000
Memory Write TLP - 32bit Address

Fmt&Type:40, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:00, LastDwBE:F, 1stDwBE:F
Address:20000000

0000: 40 00 00 20
0004: 00 00 00 FF
0008: 20 00 00 00
000C: 00 01 02 03

:
0088: 7C 7D 7E 7F
===
DrivExpress INFO from PCIe TL > Time 16800.000000: Egress Memory Write TLP
===
Transaction Descriptor (ID): 00000000
Memory Write TLP - 32bit Address

Fmt&Type:40, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:00, LastDwBE:F, 1stDwBE:F
Address:20000080

0000: 40 00 00 20
0004: 00 00 00 FF
0008: 20 00 00 80
000C: 80 81 82 83

:
0088: FC FD FE FF
===
DrivExpress INFO from PCIe TL > Time 16810.000000: Egress Memory Read TLP
===
Transaction Descriptor (ID): 00000000
Memory Read TLP - 32bit Address

Fmt&Type:00, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:00, LastDwBE:F, 1stDwBE:F
Address:20000000

0000: 00 00 00 20
0004: 00 00 00 FF
0008: 20 00 00 00
===
DrivExpress INFO from PCIe TL > Time 16810.000000: Egress Memory Read TLP
===
Transaction Descriptor (ID): 00000001
Memory Read TLP - 32bit Address

Fmt&Type:00, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:01, LastDwBE:F, 1stDwBE:F
Address:20000080

0000: 00 00 00 20
0004: 00 00 01 FF
0008: 20 00 00 80

38 Chapter 3. Best Practices

DrivExpress DPI Library, Version 1.0

For reference, below we’ve shown the log output of the received completion TLPs from the DUT for the memory read
TLPs above. You can see the 256 bytes of incrementing data, which had been written by the memory write TLPs.

===
DrivExpress INFO from PCIe TL > Time 17452.000000: Ingress Completion with Data TLP
===
Transaction Descriptor (ID): 00000000
Completion With Data TLP

Fmt&Type:4A, TC:0, TD:0, EP:0, Attr:0, Length:020
CompleterID:0108, ComplStatus:0, BCM:0, ByteCount:080
RequesterID:0000, Tag:00, LowerAddress:00

0000: 4A 00 00 20
0004: 01 08 00 80
0008: 00 00 00 00
000C: 00 01 02 03

:
0088: 7C 7D 7E 7F
===

:
===
DrivExpress INFO from PCIe TL > Time 17576.000000: Ingress Completion with Data TLP
===
Transaction Descriptor (ID): 00000001
Completion With Data TLP

Fmt&Type:4A, TC:0, TD:0, EP:0, Attr:0, Length:020
CompleterID:0108, ComplStatus:0, BCM:0, ByteCount:080
RequesterID:0000, Tag:01, LowerAddress:00

0000: 4A 00 00 20
0004: 01 08 00 80
0008: 00 00 01 00
000C: 80 81 82 83

:
0088: FC FD FE FF

See Also:

Changes max payload size of memory read/write TLP

3.5.2 Relationship between Memory Read TLP and Tag Field

The total count of non-posted TLPs which the Root Complex can issue depends on the tag field size. The default
width of tag field is 5-bits and it can be expanded to 8-bits using the expansion setting. For the default value, up to 32
non-posted TLPs can be outstanding.

Now, let’s consider how memory read TLPs are issued to the DUT when 4224 bytes are read (128× 33 = 4224) using
the mem_read() command under the conditions that the max payload size is 128 bytes and tag field width is 5-bits.
Only a 4224 byte read is done here (without checking with expected data).

Access to 0x20000000 memory address area
pcie.mem_read(0x20000000, 4224) # read 4224 bytes data

The Behavior of the above code block is as follows.

3.5. PCI Express Commands and TLPs 39

DrivExpress DPI Library, Version 1.0

1. Issues 32 memory read TLPs with 128 byte payload (Tag value: 0x00 to 0x1F)

2. Waits to receive at least one completion TLP as a response to the memory read TLPs

3. Issues last (33rd) memory read TLP with 128 byte payload by using the released tag number of the received
completion TLP

The following is the log output for the above code example. Because of space limitations, the memory read TLPs of
tag numbers 3 to 30 have been omitted.

===
DrivExpress INFO from PCIe TL > Time 16810.000000: Egress Memory Read TLP
===
Transaction Descriptor (ID): 00000000
Memory Read TLP - 32bit Address

Fmt&Type:00, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:00, LastDwBE:F, 1stDwBE:F
Address:20000000

0000: 00 00 00 20
0004: 00 00 00 FF
0008: 20 00 00 00
===
DrivExpress INFO from PCIe TL > Time 16810.000000: Egress Memory Read TLP
===
Transaction Descriptor (ID): 00000001
Memory Read TLP - 32bit Address

Fmt&Type:00, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:01, LastDwBE:F, 1stDwBE:F
Address:20000080

0000: 00 00 00 20
0004: 00 00 01 FF
0008: 20 00 00 80
===
DrivExpress INFO from PCIe TL > Time 16810.000000: Egress Memory Read TLP
===
Transaction Descriptor (ID): 00000002
Memory Read TLP - 32bit Address

Fmt&Type:00, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:02, LastDwBE:F, 1stDwBE:F
Address:20000100

0000: 00 00 00 20
0004: 00 00 02 FF
0008: 20 00 01 00

:

===
DrivExpress INFO from PCIe TL > Time 16810.000000: Egress Memory Read TLP
===
Transaction Descriptor (ID): 0000001F
Memory Read TLP - 32bit Address

Fmt&Type:00, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:1F, LastDwBE:F, 1stDwBE:F

40 Chapter 3. Best Practices

DrivExpress DPI Library, Version 1.0

Address:20000F80

0000: 00 00 00 20
0004: 00 00 1F FF
0008: 20 00 0F 80
===
DrivExpress INFO from PCIe TL > Time 27044.000000: Ingress Completion with Data TLP
===
Transaction Descriptor (ID): 00000000
Completion With Data TLP

Fmt&Type:4A, TC:0, TD:0, EP:0, Attr:0, Length:020
CompleterID:0108, ComplStatus:0, BCM:0, ByteCount:080
RequesterID:0000, Tag:00, LowerAddress:00

0000: 4A 00 00 20
0004: 01 08 00 80
0008: 00 00 00 00
000C: 00 11 22 33

:
0088: CC DD EE FF
===

:
===
DrivExpress INFO from PCIe TL > Time 27044.000000: Egress Memory Read TLP
===
Transaction Descriptor (ID): 00000000
Memory Read TLP - 32bit Address

Fmt&Type:00, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:00, LastDwBE:F, 1stDwBE:F
Address:20001000

0000: 00 00 00 20
0004: 00 00 00 FF
0008: 20 00 10 00

The memory read TLPs are issued in succession until the tag number reaches 31 (0x1F). Because it has reached the
maximum non-posted TLP count that can be issued at once, last memory TLP can not be sent until one of tag numbers
become free as a result of receiving the completion TLP.

For the above command example, you can see that the last memory TLP has been forced to wait until a completion
TLP is returned after 32 memory read TLPs are issued at simulation time 16810.000000. Because the completion TLP
for memory read TLP with tag number 0 has been returned at simulation time 27044.000000, the last memory TLP is
issued by using the open tag number 0.

Tip:

1. In the above log output example, it looks like that 32 memory read TLPs have been issued at the same simu-
lation time. This is because the displayed time here is the TLP registration time to the internal TLP FIFO of
DrviExpress, not the output time on PCI Express bus. A time difference exists between then and when those
TLPs are transmitted onto the bus (PIPE interface).

2. Because the memory write TLP sent by the mem_write() command is a posted type, it can be issued regard-
less of tag availability. The tag field value for a memory write TLP is always zero.

3.5. PCI Express Commands and TLPs 41

DrivExpress DPI Library, Version 1.0

3.5.3 Passing Memory Write Command

We saw that the memory read TLP cannot be issued until the completion TLP is returned if all the available tag values
have been consumed in sub-section “Relationship between Memory Read TLP and Tag Field”.

Let’s look at the order that the memory TLPs are issued for the following code, under conditions that the max payload
size is 128 bytes and tag field width is 5-bits.

Access to 0x20000000 memory address area
buf = [i for i in range(256)] # 256 bytes increment data
pcie.mem_read (0x20000000, 0x1080) # read 4224 bytes data
pcie.mem_write(0x20001080, 0x100, buf) # write 256 bytes increment data

Because max payload size is 128 bytes, it is necessary to issue a total of 33 memory read TLPs (4224 ÷ 128 = 33).
The maximum memory read TLP count that can be issued at once is 32 because tag field width is 5-bits, so at least
one completion TLP must be returned from DUT before the last memory read TLP can be issued.

The next command is mem_write(). Because write size is 256 bytes, it is necessary to issue two memory write
TLPs. We already know that the memory write TLP is a posted type and thus it can be issued regardless of tag
availability. On the other hand, the previous command mem_read() must wait until tag number becomes open.

When DrivExpress executes the above code, it issues two memory write TLPs for the mem_write() command after
issuing all memory read TLPs for the previous mem_read() command by default. This means the mem_write()
is forced to wait because mem_read() command blocks it even though it doesn’t have to wait for an open tag.

The following is the log output for the above code example. Because of space limitations, the memory read TLPs for
tag numbers 1 to 30 have been omitted.

===
DrivExpress INFO from PCIe TL > Time 16800.000000: Egress Memory Read TLP
===
Transaction Descriptor (ID): 00000000
Memory Read TLP - 32bit Address

Fmt&Type:00, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:00, LastDwBE:F, 1stDwBE:F
Address:20000000

0000: 00 00 00 20
0004: 00 00 00 FF
0008: 20 00 00 00

:

===
DrivExpress INFO from PCIe TL > Time 16800.000000: Egress Memory Read TLP
===
Transaction Descriptor (ID): 0000001F
Memory Read TLP - 32bit Address

Fmt&Type:00, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:1F, LastDwBE:F, 1stDwBE:F
Address:20000F80

0000: 00 00 00 20
0004: 00 00 1F FF

42 Chapter 3. Best Practices

DrivExpress DPI Library, Version 1.0

0008: 20 00 0F 80
===
DrivExpress INFO from PCIe TL > Time 17124.000000: Ingress Completion with Data TLP
===
Transaction Descriptor (ID): 00000000
Completion With Data TLP

Fmt&Type:4A, TC:0, TD:0, EP:0, Attr:0, Length:020
CompleterID:0108, ComplStatus:0, BCM:0, ByteCount:080
RequesterID:0000, Tag:00, LowerAddress:00

0000: 4A 00 00 20
0004: 01 08 00 80
0008: 00 00 00 00

:
0088: 00 00 00 00
===

:
===
DrivExpress INFO from PCIe TL > Time 17124.000000: Egress Memory Read TLP
===
Transaction Descriptor (ID): 00000000
Memory Read TLP - 32bit Address

Fmt&Type:00, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:00, LastDwBE:F, 1stDwBE:F
Address:20001000

0000: 00 00 00 20
0004: 00 00 00 FF
0008: 20 00 10 00
===
DrivExpress INFO from PCIe TL > Time 17124.000000: Egress Memory Write TLP
===
Transaction Descriptor (ID): 00000000
Memory Write TLP - 32bit Address

Fmt&Type:40, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:00, LastDwBE:F, 1stDwBE:F
Address:20001080

0000: 40 00 00 20
0004: 00 00 00 FF
0008: 20 00 10 80
000C: 00 01 02 03

:
0088: 7C 7D 7E 7F
===
DrivExpress INFO from PCIe TL > Time 17124.000000: Egress Memory Write TLP
===
Transaction Descriptor (ID): 00000000
Memory Write TLP - 32bit Address

Fmt&Type:40, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:00, LastDwBE:F, 1stDwBE:F
Address:20001100

0000: 40 00 00 20

3.5. PCI Express Commands and TLPs 43

DrivExpress DPI Library, Version 1.0

0004: 00 00 00 FF
0008: 20 00 11 00
000C: 80 81 82 83

:
0088: FC FD FE FF

After issuing 32 memory read TLPs, the last memory read TLP has been issued at simulation time 17124.000000 after
one completion TLP has been returned. After that, we can see that two memory write TLPs have been issued.

What should we do if we would like to issue the mem_write() command without waiting for the last mem_read()
command? The parameter that makes this request possible is provided by Root Complex class.

When is_mem_write_sync is set to False, the mem_write() command can overtake the non-posted com-
mand which is waiting for an open tag. The default value of is_mem_write_sync is True, so the mem_write()
command is never overtakes a non-posted command issued earlier. If is_mem_write_sync is True, this allows
the mem_write() command to be issued as if it was written simultaneously to the mem_read().

A code example, in which the mem_write() command overtakes the mem_read() command, is as follows.

Memory write TLP may pass non-posted TLP which is waiting for available tag
pcie.is_mem_write_sync = False

Access to 0x20000000 memory address area
buf = [i for i in range(256)] # 256 bytes increment data
pcie.mem_read (0x20000000, 0x1080) # read 4224 bytes data
pcie.mem_write(0x20001080, 0x100, buf) # write 256 bytes increment data

The following is the log output for the above code example. Because of space limitations, the memory read TLPs for
tag numbers 1 to 30 have been omitted again.

===
DrivExpress INFO from PCIe TL > Time 16800.000000: Egress Memory Read TLP
===
Transaction Descriptor (ID): 00000000
Memory Read TLP - 32bit Address

Fmt&Type:00, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:00, LastDwBE:F, 1stDwBE:F
Address:20000000

0000: 00 00 00 20
0004: 00 00 00 FF
0008: 20 00 00 00

:

===
DrivExpress INFO from PCIe TL > Time 16800.000000: Egress Memory Read TLP
===
Transaction Descriptor (ID): 0000001F
Memory Read TLP - 32bit Address

Fmt&Type:00, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:1F, LastDwBE:F, 1stDwBE:F
Address:20000F80

44 Chapter 3. Best Practices

DrivExpress DPI Library, Version 1.0

0000: 00 00 00 20
0004: 00 00 1F FF
0008: 20 00 0F 80
===
DrivExpress INFO from PCIe TL > Time 16810.000000: Egress Memory Write TLP
===
Transaction Descriptor (ID): 00000000
Memory Write TLP - 32bit Address

Fmt&Type:40, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:00, LastDwBE:F, 1stDwBE:F
Address:20001080

0000: 40 00 00 20
0004: 00 00 00 FF
0008: 20 00 10 80
000C: 00 01 02 03

:
0088: 7C 7D 7E 7F
===
DrivExpress INFO from PCIe TL > Time 16810.000000: Egress Memory Write TLP
===
Transaction Descriptor (ID): 00000000
Memory Write TLP - 32bit Address

Fmt&Type:40, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:00, LastDwBE:F, 1stDwBE:F
Address:20001100

0000: 40 00 00 20
0004: 00 00 00 FF
0008: 20 00 11 00
000C: 80 81 82 83

:
0088: FC FD FE FF
===
DrivExpress INFO from PCIe TL > Time 17124.000000: Ingress Completion with Data TLP
===
Transaction Descriptor (ID): 00000000
Completion With Data TLP

Fmt&Type:4A, TC:0, TD:0, EP:0, Attr:0, Length:020
CompleterID:0108, ComplStatus:0, BCM:0, ByteCount:080
RequesterID:0000, Tag:00, LowerAddress:00

0000: 4A 00 00 20
0004: 01 08 00 80
0008: 00 00 00 00

:
0088: 00 00 00 00
===

:
===
DrivExpress INFO from PCIe TL > Time 17124.000000: Egress Memory Read TLP
===
Transaction Descriptor (ID): 00000000
Memory Read TLP - 32bit Address

3.5. PCI Express Commands and TLPs 45

DrivExpress DPI Library, Version 1.0

Fmt&Type:00, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:00, LastDwBE:F, 1stDwBE:F
Address:20001000

0000: 00 00 00 20
0004: 00 00 00 FF
0008: 20 00 10 00

After the memory read TLP with tag number 31 (0x1F), you can see that the two memory write TLPs for the
mem_write() command have been issued immediately. Then the last memory read TLP is issued after receiving
one completion TLP.

If the target address of memory read command and memory write command does not overlap as in the above code
example, there is no problem with the command reordering. However, there is a possibility that the simulation will
give an undesired result reordering occurs.

Memory write TLP may pass non-posted TLP which is waiting for available tag
pcie.is_mem_write_sync = False

zero_buf = [0x00 for i in range(0x1800)] # 6144 bytes all zero data
incr_buf = [(i & 0xFF) for i in range(0x1800)] # 6144 bytes increment data

Access to 0x20000000 memory address area
pcie.mem_read (0x20000000, 0x1800, zero_buf) # read 6144 bytes all zero data
pcie.mem_write(0x20000000, 0x1800, incr_buf) # write 6144 bytes increment data

For the above code example, it is necessary to issue a total of 48 memory read TLPs (6144 ÷ 128 = 48) to execute
first mem_read() command. Because the maximum outstanding memory read TLP count is 32, the remaining 16
memory read TLPs have to wait for an open tag number. In this situation, the mem_write() command tries to write
incrementing data to the same target address although the mem_read() command is expecting all 0x00. As a result,
the returned data for the mem_read() command will change to incrementing data during execution. This will cause
a lot of mismatch errors with the expected data.

In fact, even if is_mem_write_sync is True for the above code, it only ensures that 48 memory read TLPs
are issued in a row. It does not guarantee that all completion TLPs for the mem_read() command are re-
turned. If you would like to issue the mem_write() command after receiving the all completion TLPs, the
wait_completion() command should be executed right after the mem_read() command.

See Also:

1. Memory write command synchronization parameter

2. Issues next command after receiving completion packet -Part 1-

3. Completion packet wait command

46 Chapter 3. Best Practices

DrivExpress DPI Library, Version 1.0

3.6 DrivExress TLP FIFO

DrivExpress has two TLP FIFOs internally to store TLPs temporarily. These are called the Egress TLP FIFO and the
Ingress TLP FIFO. In addition to those FIFOs, one more internal FIFO exists. It is called the Non-Posted Request
FIFO and used to check completion TLPs from the DUT for issued non-posted TLPs.

In this section, we will explain the function of those FIFOs and how to control them.

3.6.1 Egress TLP FIFO

As described in the previous section “PCI Express Commands and TLPs”, configuration access commands and mem-
ory access commands provided by the Root Complex class are issued to the DUT, after being transformed to a single
TLP or multiple TLPs. The Egress TLP FIFO is used to store these TLPs temporarily until they are issued to the DUT.
Because it manages the TLPs in the direction from the Root Complex to the Endpoint device, it is called as Egress
TLP FIFO.

The TLPs that are pushed into Egress TLP FIFO are popped by the Data Link Layer Packet (hereinafter referred to as
DLLP) processing layer and it is stored by the buffer, which is managed by the DLLP processing layer, after a sequence
number and Link CRC (hereinafter referred to as LCRC) are added. Eventually, it is output onto PCI Express bus, or
PIPE interface.

The Root Complex class supports two parameters to control Egress TLP FIFO. One is the
max_fifo_count_egress_tlp parameter and the other is the proc_wait_clks_egress_tlp pa-
rameter.

The Egress TLP FIFO size (depth) can be changed by the max_fifo_count_egress_tlp parameter. The default
size of Egress TLP FIFO is 8192. This means up to 8192 egress TLPs can be stored.

The code for doubling the size of Egress TLP FIFO is as follows.

Expands egress TLP FIFO size to 16384
pcie.max_fifo_count_egress_tlp = 16384

The other parameter proc_wait_clks_egress_tlp is used to change the timing used by the DLLP processing
layer to pop a TLP from Egress TLP FIFO. The clock count is specified using the proc_wait_clks_egress_tlp
parameter. When the DLLP processing layer retrieves a TLP from Egress TLP FIFO, first waits the specified clock
count.

The clock count value should be based on not command clock but PCI Express bus clock, or PIPE interface bus clock
more precisely. The clock frequency of PIPE interface bus is 250MHz (4ns) for of Gen1 and 500MHz (2ns) in the
case of Gen2.

The default value of the proc_wait_clks_egress_tlp parameter is 0. This means DLLP processing layer pops
a TLP from Egress TLP FIFO without waiting.

The code for putting 256 clocks of delay before a TLP is retrieved from Egress TLP FIFO is as follows.

Waits 256 PIPE clocks when DrivExpress DLLP pops TLP from egress TLP FIFO
pcie.proc_wait_clks_egress_tlp = 256

In fact, users have little opportunity to use these parameters. If you encounter the message about FIFO overflow, try
to change the value of the max_fifo_count_egress_tlp parameter.

3.6. DrivExress TLP FIFO 47

DrivExpress DPI Library, Version 1.0

See Also:

1. Egress TLP FIFO size setting parameter

2. Egress TLP FIFO pop timing delay parameter

3.6.2 Ingress TLP FIFO

We have already explained that Egress TLP FIFO manages all TLPs transmitted from the Root Complex to Endpoint
device. The Ingress TLP FIFO is the FIFO for the opposite direction, so it stores all TLPs coming from Endpoint
device temporarily.

To control the Ingress TLP FIFO, two similar parameters to Egress TLP FIFO are supported by the
Root Complex class. One is the max_fifo_count_ingress_tlp parameter and the other is the
proc_wait_clks_ingress_tlp parameter.

The max_fifo_count_ingress_tlp parameter is used to change Ingress TLP FIFO size (depth). The default
size of the Ingress TLP FIFO is also 8192. This means up to 8192 ingress TLPs can be stored.

The code for doubling the size of the Ingress TLP FIFO is as follows.

Expands ingress TLP FIFO size to 16384
pcie.max_fifo_count_ingress_tlp = 16384

The other parameter, proc_wait_clks_ingress_tlp, is used to change the timing used by the TLP processing
layer to control when it pops a TLP from Ingress TLP FIFO. The clock count value should be based on the PIPE
interface bus clock like the proc_wait_clks_egress_tlp parameter. When the TLP processing layer retrieves
a TLP from Ingress TLP FIFO, it retrieves a TLP after waiting for the specified clock count. Please note that not the
DLLP but TLP processing layer pops a TLP from Ingress TLP FIFO. This is because the direction of FIFO is opposite
to the Egress TLP FIFO.

The code for putting 256 clocks of delay before a TLP is retrieved from Ingress TLP FIFO is as follows.

Waits 256 PIPE clocks when DrivExpress TLP pops TLP from ingress TLP FIFO
pcie.proc_wait_clks_ingress_tlp = 256

In fact, users also have little opportunity to use these parameters. If you encounter the message about a FIFO overflow,
try to change the value of the max_fifo_count_ingress_tlp parameter.

Note: Except for special cases, it is not recommended to use the proc_wait_clks_ingress_tlp parameter to
control the timing of ingress TLP processing. Because it blocks the TLP processing layer to retrieve a TLP coming
from Endpoint device, there is a possibility that the time-out for the Non-Posted Request FIFO will occur even though
DrivExpress has already received the completion TLP. Please refer to the next section for information about the time-
out for the Non-Posted Request FIFO.

See Also:

1. Ingress TLP FIFO size setting parameter

2. Ingress TLP FIFO pop timing delay parameter

48 Chapter 3. Best Practices

DrivExpress DPI Library, Version 1.0

3.6.3 Non-Posted Request FIFO

A non-posted type command provided by Root Complex class doesn’t complete until receiving the corresponding
completion TLP(s) after sending the request TLP(s) to the DUT.

When DrivExpress has received a completion TLP from the DUT, it searches for the relevant non-posted TLP already
issued to the DUT. When DrivExpress has found the relevant non-posted TLP, it checks to ensure that the received
completion TLP is not broken and compares it to the expected data if it exists. The Non-Posted Request FIFO is used
for this process and it stores the contents of the non-posted TLP request and the expected data (if it exists) to check
the corresponding completion TLP(s) later.

When the configuration TLP or memory read TLP, which are both non-posted types of TLP, are pushed into the
Egress TLP FIFO, the request contents are stored in the Non-Posted Request FIFO. It is removed from the Non-Posted
Request FIFO after the corresponding completion TLP has been returned from the DUT.

To control the time-out for the Non-Posted Request FIFO, the nptlp_timeout_clks parameter has been provided
by Root Complex class. The time-out occurs if the corresponding completion TLP is not returned from the DUT if the
specified time has passed after a non-posted TLP was issued to DUT. At that point, the request TLP is forced from the
Non-Posted Request FIFO because of the time-out.

The clock count is set to by the nptlp_timeout_clks parameter and its value should be based on the PIPE
interface bus clock. As described in the previous sub-section “Egress TLP FIFO”, the clock frequency of the PIPE
interface bus is 250MHz (4ns) in the case of Gen1 and 500MHz (2ns) in the case of Gen2. The default value of the
nptlp_timeout_clks parameter is 65535. This means the time-out period for the Non-Posted Request FIFO is
about 131us (65535× 2 = 131070ns) for Gen2 and about 262us (65535× 4 = 262140ns) for Gen1. More precisely,
if the corresponding completion TLP is not returned from the DUT when 131us (Gen2) or 262us (Gen1) of simulation
time has passed after the non-posted TLP was issued to the DUT, the relevant request is removed from the Non-Posted
Request FIFO.

The code for changing the value of the nptlp_timeout_clks parameter to 8192 clocks is as follows.

Completion TLP timeout period is 8192 clocks (PIPE clock base)
pcie.nptlp_timeout_clks = 8192

A Race condition, in which the completion TLP is returned after the time-out, may occur if a small value is set for
the nptlp_timeout_clks parameter. Such a completion TLP is called a zombie completion packet and is just
discarded. If you encounter a zombie completion in the log output, check the value of the nptlp_timeout_clks
parameter. As a reference, the log output of this race condition is shown below.

DrivExpress INFO from PCIe TL > Time 18630.000000: Egress Config Read TLP
===
Transaction Descriptor (ID): 00000000
Config Read TLP

Fmt&Type:04, TD:0, EP:0, Attr:0, Length:001
RequesterID:0000, Tag:00, LastDwBE:0, 1stDwBE:F
BusNum:01, DevNum:1, FuncNum:0, RegisterNum:018

0000: 04 00 00 01
0004: 00 00 00 0F
0008: 01 08 00 18
===
DrivExpress !ERR from PCIe TL > Time 18650.000000: Removed Timeout Non-Posted TLP
DrivExpress !ERR from PCIe TL > Time 18786.000000: Zombie Completion with Data TLP
===
Transaction Descriptor (ID): 00000000

3.6. DrivExress TLP FIFO 49

DrivExpress DPI Library, Version 1.0

Completion With Data TLP

Fmt&Type:4A, TC:0, TD:0, EP:0, Attr:0, Length:001
CompleterID:0108, ComplStatus:0, BCM:0, ByteCount:004
RequesterID:0000, Tag:00, LowerAddress:00

0000: 4A 00 00 01
0004: 01 08 00 04
0008: 00 00 00 00
000C: 00 00 00 10
===

When 20ns of simulation time has passed after issuing a configuration read TLP to the DUT, the request contents of
the configuration read TLP has been removed from the Non-Posted FIFO because the time-out occurred. Because the
corresponding completion TLP is returned from the DUT after the time-out, you can see that it has been handled as
zombie completion packet.

See Also:

Non-posted TLP request time-out parameter

50 Chapter 3. Best Practices

DrivExpress DPI Library, Version 1.0

3.7 Verilog Task and Shell Module

From the point of view of Verilog world, DrivExpress consists of three Verilog tasks. It is necessary to define the
Verilog module by using those tasks and connecting the module to the DUT.

The DrivExpress Verilog module reference design pcie_pipe_dpi_shell.v has been provided
in the $DRIVEXPRESS_ROOTDIR/lib directory. In this section, we will look in detail at the
pcie_pipe_dpi_shell.v file.

Two Verilog modules have been defined in this reference design. The main purpose is to hide the DrivExpress tasks
and transform them to a Verilog module so we can connect them to an external Verilog module, namely the DUT.
Therefore, this kind of Verilog module is called a Verilog shell module, or shell module for short.

3.7.1 Command Processor Model

The first shell module CMD_PROC is for command processing. The I/O ports of this module are as follows.

//***
// Command Processor interface *
//***
module CMD_PROC (

input CLK, // Clock input
output VER_RST, // DPI Generated RST signal output
output [31:0] CNT); // DPI Generated count of the number of calls to CMD_PROC

The CLK signal is the command clock signal, which is used when retrieving a queue-type command from the Driv-
Express internal command queue. The VER_RST signal is the reset signal and it is asserted when the reset()
command, which is provided by the Simulation Control class, is executed. The CNT output is a command counter
signals and it indicates how many queue-type commands have been processed by DrivExpress.

In this module, two DrivExpress tasks have been used. In one of those tasks, c_drivexpress(), we will see the
DPI declaration and how it has been used in the module.

Declaration of c_drivexpress() DPI task

import "DPI-C" task c_drivexpress(input string filename);

Execution code of c_drivexpress() DPI task

initial
c_drivexpress("test_main.py"); // Python main script

The c_drivexpress() task is equivalent to the Python interpreter. It is necessary to specify the Python script file
name as the argument.

This task must be called only once at simulation time 0. Therefore, it is usually called at the beginning of the initial
statement as in the example above.

In the section “Writing A Test Script (Part 1)”, we explained that file name first loaded is test_main.py. The
reason for this is that test_main.py has been passed to the c_drivexpress() task as a Python script file here.
If another file name is used, that file is interpreted by Python interpreter instead.

3.7. Verilog Task and Shell Module 51

DrivExpress DPI Library, Version 1.0

In the next step, we will see the DPI declaration of the other DrivExpress task c_cmd_proc() and how it has been
used.

Declaration of c_cmd_proc() DPI task

import "DPI-C" task c_cmd_proc(input real sim_time,
output logic [31:0] ctrl_signals,
output logic [31:0] cmd_counter);

Execution code of c_cmd_proc() DPI task

always @(posedge CLK) begin
sim_time = $realtime;
c_cmd_proc(sim_time, ctrl_signals, cmd_counter);

end

The c_cmd_proc() task is the command processor – exactly what it sounds like. It retrieves a command, which was
earlier pushed onto the command queue, and executes it. The c_cmd_proc() task has a command execution clock
counter internally. If the count of the c_cmd_proc() task reaches the command execution clock count (changed by
the cmd_interval_clks parameter of Simulation Control class), a command is popped from the queue and the
internal command execution clock counter is set back to 0. Because of this, calling the c_cmd_proc() task does
not always result in an executed command. Please refer to “Changes command execution interval” for details on the
cmd_interval_clks parameter.

Let’s look at the arguments of the c_cmd_proc() task. The first argument that should be passed to it is sim_time.
The second argument, ctrl_signals, is a 32-bit output signal. In this version of DrivExpress, only the lowest
1-bit signal, ctrl_signals[0], is used. It is a system reset signal. None of the other bits are used currently. This
ctrl_signals[0] signal is asserted when executing the reset() command provided by the Simulation Control
class. The last argument, cmd_counter, is also a 32-bit output signal and it outputs the total count of queue-type
commands which have been processed.

As we shall see in this section, it is necessary to define the Verilog shell module that calls DrivExpress tasks imple-
mented by the C++ language internally, and to connect DrivExpress to another Verilog modules – in this case the DUT
in the top level testbench file.

We will look at the inside of top testbench file later. Before that, let’s look at the other shell module PCIE_PIPE.

3.7.2 PCI Express PIPE Interface Model

The other shell module PCIE_PIPE is the bus model of the PCI Express PIPE interface. In the top testbench file,
DrivExpress and the DUT design using the ALTERA PCI Express IP are connected each other through this PIPE
interface. The I/O ports of this DrivExpress module is almost the same as the PIPE interface.

//***
// PCI Express PIPE interface *
//***
module PCIE_PIPE
#(parameter

Lane_num = 0) // Lane Number
(

input REF_CLK, // Ref Clock input
input TX_CLK, // Transmit Data Clock
input [7:0] TX_DATA, // Data

52 Chapter 3. Best Practices

DrivExpress DPI Library, Version 1.0

input TX_K, // K Bits
input TX_DETECTRX, // Command Input Bit 6
input TX_ELECIDLE, // Command Input Bit 5
input TX_COMPLIANCE, // Command Input Bit 4
input RX_POLARITY, // Command Input Bit 3
input RST_L, // Command Input Bit 2
input [1:0] POWERDN, // Command Input Bits 1:0
output RX_CLK, // Same as clock input
output [7:0] RX_DATA, // RX Data Out
output RX_K, // RX K bits
output RX_VALID, // Status Bit 5
output PHY_STATUS, // Status Bit 4
output RX_ELECIDLE, // Status Bit 3
output [2:0] RX_STATUS, // Status Bits 2:0
input [3:0] INTERRUPTS); // OOB Interrupts

In fact, the INTERRUPTS signals are not a part of the PIPE interface. Although it has been defined on the assumption
that the DUT signifies a certain event to DrivExpress through PIPE interface, it is not supported in this version. This
definition is for future expansion.

Other signals are exactly like the PIPE interface itself. Please refer to the specification of the PIPE interface for the
meanings of each signal.

The PCIE_PIPE shell module uses the DrivExpress task c_pcie_pipe_bus(). Let’s see the DPI declaration for
this task and how it has been used internally.

Declaration of c_pcie_pipe_bus() DPI task

import "DPI-C" task c_pcie_pipe_bus(input real sim_time,
input int lane,
input logic [3:0] interrupt,
input logic [7:0] txdata,
input logic txk,
input logic [6:0] command,
output logic [7:0] rxdata,
output logic rxk,
output logic [5:0] status);

Execution code of c_pcie_pipe_bus() DPI task

always @(posedge TX_CLK) begin
sim_time = $realtime;
c_pcie_pipe_bus(sim_time, lane, interrupt,

txdata, txk, command, rxdata, rxk, status);
end

The arguments of the c_pcie_pipe_bus() task are almost the same as the PIPE interface.

The first argument, sim_time, is the simulation time when this task was called.

The lane number, in the case of a multiple lane configuration, is specified in the second argument, lane. The lane
number starts from 0 and it increases one-by-one depending on the lane configuration. For example, when connecting
to ALTERA PCI Express IP with a 4 lane configuration, it is necessary to prepare 4 c_pcie_pipe_bus() tasks,
and lane numbers 0 to 3 are assigned to each task.

3.7. Verilog Task and Shell Module 53

DrivExpress DPI Library, Version 1.0

The 4-bit input signal interrupt has not been used in this version. As described above, the definition has only been
prepared for future expandability.

Other signals tkdata, txk, command, rxdata, rxk, and status correspond to PIPE interface signals TxData,
TxDataK, Command, RxData, RxDataK, and Status respectively.

Please take a look at the assign statements in the PCIE_PIPE module to see how to connect each of these.

54 Chapter 3. Best Practices

DrivExpress DPI Library, Version 1.0

3.8 Connection Methods in Top Testbench

In this section, we will explain how to use the CMD_PROC and PCIE_PIPE shell modules in the Verilog top testbench.
We’ll use the design created in the section “Making the DUT” as the DUT. It is a chaining DMA controller with a PCI
Express Gen2 x4 interface. By using this DUT design, we will show how to connect between the DUT and the four
PCIE_PIPE shell modules.

Please also refer to the testbench source file drvex_tb.v, which is explained in this section. It is located in the
$DRIVEXPRESS_ROOTDIR/sample/design/tbx4 directory.

3.8.1 Command Processor Part

Only one command processor model CMD_PORC is instantiated and the clock and the reset signals are connected as
follows.

• Generate the command clock, which is used when retrieving a queue-type command from the DrivExpress
internal command queue, and connect it to the CLK input.

• Connect the VER_RST output, which is corresponds to the system reset signal, to the reset line of the DUT and
to each PCIE_PIPE module.

The relevant part of the code is shown below.

Command Processor Model Instance

CMD_PROC cmd_proc (
.CLK (cmd_clk), // Clock input
.VER_RST (ver_rst_dpi), // DPI Generated RST signal output
.CNT (cmd_cnt)); // Total count of executed command (Queue type only)

Command Clock and System Reset

initial
begin

#0 cmd_clk = 0;
#5 forever #5 cmd_clk = !cmd_clk;

end

initial
begin

#0 before_rst = 1;
#5 before_rst = 0;

end

assign ver_rst = before_rst?1’b1:ver_rst_dpi;

In the above example a 10ns command clock, which low and high period are 5ns each, is generated and it is connected
to the CLK port of command processor. In addition, the assign statement is defined to be able to use system reset,
which is output from command processor. More precisely, the generated ver_rst signal is connected to the DUT
pcie_proj_example_chaining_pipen1b and four PCIE_PIPE modules as a reset signal.

3.8. Connection Methods in Top Testbench 55

DrivExpress DPI Library, Version 1.0

3.8.2 Connection between PIPE interface model and DUT

Because of the 4 lane configuration, four PCIE_PIPE modules are instantiated and each of the ports of those modules
are connected to the DUT pcie_proj_example_chaining_pipen1b.

As an example, the connection of TxData and TxDataK, which are a part of the PIPE interface signals, are shown
below. Please refer to the source file for the connection of other signals.

DUT Instance

pcie_proj_example_chaining_pipen1b ep
(

:
.txdata0_ext (txdata0_ext), // Lane 0 TxData
.txdata1_ext (txdata1_ext), // Lane 1 TxData
.txdata2_ext (txdata2_ext), // Lane 2 TxData
.txdata3_ext (txdata3_ext), // Lane 3 TxData
.txdatak0_ext (txdatak0_ext), // Lane 0 TxDataK
.txdatak1_ext (txdatak1_ext), // Lane 1 TxDataK
.txdatak2_ext (txdatak2_ext), // Lane 2 TxDataK
.txdatak3_ext (txdatak3_ext), // Lane 3 TxDataK

:
);

PIPE Interface Model Instances

PCIE_PIPE #(
.Lane_num (0)) PCIE_L0

(
:

.TX_DATA (txdata0_ext),

.TX_K (txdatak0_ext),
:

);

PCIE_PIPE #(
.Lane_num (1)) PCIE_L1

(
:

.TX_DATA (txdata1_ext),

.TX_K (txdatak1_ext),
:

);

PCIE_PIPE #(
.Lane_num (2)) PCIE_L2

(
:

.TX_DATA (txdata2_ext),

.TX_K (txdatak2_ext),
:

);

PCIE_PIPE #(
.Lane_num (3)) PCIE_L3

(
:

.TX_DATA (txdata3_ext),

56 Chapter 3. Best Practices

DrivExpress DPI Library, Version 1.0

.TX_K (txdatak3_ext),
:

);

We can see that lane number 0 to 3 are set in the Lane_num parameter of each of the PCIE_PIPE modules and each
set of TxData and TxDataK are connected to the DUT.

Please also refer to the testbench source file for single lane or 8 lane configurations. Those files are located in the
$DRIVEXPRESS_ROOTDIR/sample/design/tbx1(8) directory.

3.8. Connection Methods in Top Testbench 57

DrivExpress DPI Library, Version 1.0

58 Chapter 3. Best Practices

CHAPTER

FOUR

COOKBOOK

We will introduce some practical methods to make full use of DrivExpress and the matters that users may have
questions in each topic here.

Some code examples are shown in this chapter. In those examples, it is assumed that Root Complex class and Simu-
lation Control class are instantiated as pcie and sim respectively.

59

DrivExpress DPI Library, Version 1.0

4.1 Issues memory read/write TLP with 64-bit address

A number of memory access command like mem_read() or mem_write() provided by Root Complex class issues
memory read/write TLP with 32-bit address by default.

To issue memory read/write TLP with 64-bit address, set is_64bit_address parameter of Root Complex class to
True.

pcie.is_64bit_address = True

The following is log output of issuing 64-bit memory write TLP.

DrivExpress INFO from PCIe TL > Time 16290.000000: Egress Memory Write TLP
===
Transaction Descriptor (ID): 00000000
Memory Write TLP - 64bit Address

Fmt&Type:60, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:00, LastDwBE:F, 1stDwBE:F
Address:2000000000000000

0000: 60 00 00 20
0004: 00 00 00 FF
0008: 20 00 00 00
000C: 00 00 00 00
0010: 00 11 22 33
0014: 44 55 66 77

:

Tip: To set back to 32-bit memory read/write TLP, you can also do it by setting is_32bit_address param-
eter to True instead of setting is_64bit_address parameter to False. Because is_32bit_address and
is_64bit_address parameters are exclusive each other, the other is Flase whenever one is True.

See Also:

64-bit memory address enabling parameter

60 Chapter 4. Cookbook

DrivExpress DPI Library, Version 1.0

4.2 Changes max payload size of memory read/write TLP

When reading or writing any byte size for Endpoint device by using mem_read() or mem_write() commands of
Root Complex class, it will be split to multiple TLPs if the size is more than max payload size of Endpoint device.
For example, two memory read or write TLPs are issued when executing 256 bytes mem_read() or mem_write()
command if the max payload size is 128. To make a change to issuing one memory read or write TLP for 256 bytes
mem_read() or mem_write() command, do the followings.

• Set max_payload_size parameter of Root Complex to 256.

• Change Max Payload Size field of Device Control register of Endpoint device to the bit pattern of 256 bytes.

Expand max payload size from 128 to 256 byte.
pcie.max_payload_size = 256
pcie.cfg_write16(PCIE_DEVICE_CONTROL, MAX_PAYLOAD_SIZE_256B)

The following is log output for 256 bytes mem_read() command. We can see that the length field of memory read
TLP is 40h double word (256 bytes).

===
DrivExpress INFO from PCIe TL > Time 16310.000000: Egress Memory Read TLP
===
Transaction Descriptor (ID): 00000000
Memory Read TLP - 64bit Address

Fmt&Type:20, TC:0, TD:0, EP:0, Attr:0, Length:040
RequesterID:0000, Tag:00, LastDwBE:F, 1stDwBE:F
Address:2000000000000000

0000: 20 00 00 40
0004: 00 00 00 FF
0008: 20 00 00 00
000C: 00 00 00 00

Tip:

1. It is necessary that Endpoint device supports 256 bytes max payload size.

2. The above code changes Max Payload Size field only of Device Control register for simplicity. Depending on
your needs, set other bit or field.

3. Same procedure is used for changing to 128, 512, 1024, 2048, or 4096 byte max payload size.

See Also:

Max Payload Size setting parameter

4.2. Changes max payload size of memory read/write TLP 61

DrivExpress DPI Library, Version 1.0

4.3 Controls DrivExpress log output

We can do on-off control for output log of DrivExpress by category like only printing memory read TLP.

There are two main types of on-off controls. One is report-type parameter which prints after analyzing the data
contents, and the other is watch-type parameter which prints just the raw data. By default, all report-type parameters
are ON(True) and all watch-type parameters are OFF(False).

As an example, the code is shown below when printing configuration read TLP, memory read TLP, and completion
with data TLP only.

Disable all watch family parameters
pcie.is_watch_ingress_dllp = False
pcie.is_watch_ingress_tlp = False
pcie.is_watch_egress_dllp = False
pcie.is_watch_egress_tlp = False
pcie.is_watch_framer_striper = False
pcie.is_watch_destriper_deframer = False

Enable memory read, config read, and completion with data TLP only
pcie.is_report_ltssm = False
pcie.is_report_init_fc = False
pcie.is_report_mem_read_tlp = True
pcie.is_report_mem_write_tlp = False
pcie.is_report_cfg_read_tlp = True
pcie.is_report_cfg_write_tlp = False
pcie.is_report_cpl_with_data_tlp = True
pcie.is_report_cpl_without_data_tlp = False

See Also:

1. Ingress DLLP raw data print enabling parameter

2. Ingress TLP raw data print enabling parameter

3. Egress DLLP raw data print enabling parameter

4. Egress TLP raw data print enabling parameter

5. Framer/Striper behavior print enabling parameter

6. De-Striper/De-Framer behavior print enabling parameter

7. LTSSM report enabling parameter

8. InitFC report enabling parameter

9. Configuration read TLP report enabling parameter

10. Configuration write TLP report enabling parameter

11. Memory read TLP report enabling parameter

12. Memory write TLP report enabling parameter

13. Completion with data TLP report enabling parameter

14. Completion without data TLP report enabling parameter

62 Chapter 4. Cookbook

DrivExpress DPI Library, Version 1.0

4.4 Changes command execution interval

Each command in the command queue is popped and executed per 9 command clocks. This means the interval clock
count between each command is 8.

To change this interval, set cmd_interval_clks parameter of Simulation Control class to another value. For
example, set cmd_interval_clks parameter to 0 to execute a command per 1 command clock.

sim.cmd_interval_clks = 0

See Also:

1. Command Queue and Command Type

2. Command execution interval setting parameter

4.4. Changes command execution interval 63

DrivExpress DPI Library, Version 1.0

4.5 Issues next command after receiving completion packet -Part 1-

There are two methods to wait for the completion packet(s) for non-posted type command. We introduce here one of
them wait_completion() command of Root Complex class.

When executing wait_completion() command, DrivExpress does not retrieve next command from the queue
until all completion packets for non-posted type command are returned from Endpoint device.

The code example is shown below.

pcie.cfg_read16 (VENDOR_ID, 0x1172)
pcie.cfg_read16 (DEVICE_ID, 0x0004)
pcie.cfg_write32(BAR0, 0xFFFFFFFF)
pcie.completion_wait() # Wait for completions for 3 config commands
pcie.cfg_read32 (BAR0)

In the above example, first 3 configuration access commands are issued without waiting for the completion packet
for the prior command, but last 32-bit configuration read command is not issued until all completion packets for the
3 configuration access command previously executed. This means remaining completion packets are nothing when
executing the cfg_read32() command.

The wait_completion() command can take one optional argument which time-out value is set. The time-out
value should be based on command clock. When the time-out happens, wait_completion() command is ter-
minated and DrivExpress goes to next command. If no time-out value is set, wait_completion() command is
effective until another time-out by nptlp_timeout_clks parameter happens.

Tip: Only queue-type command is blocked by wait_completion() command. Because icommand or parameter
setting are executed instantly without queueing, those are not blocked.

See Also:

1. Issues next command after receiving completion packet -Part 2-

2. Non-Posted Request FIFO

3. Non-posted TLP request time-out parameter

4. Completion packet wait command

64 Chapter 4. Cookbook

DrivExpress DPI Library, Version 1.0

4.6 Issues next command after receiving completion packet -Part 2-

There are two methods to wait for the completion packet(s) for non-posted type command. We introduce here one of
them is_completion_wait parameter of Root Complex class.

When is_completion_wait is set to True, all non-posted type commands wait for the corresponding completion
packet(s) being returned. This is same effect as executing wait_completion() command for every non-posted
type command.

The code example is shown below.

pcie.is_completion_wait = True
pcie.cfg_read16 (VENDOR_ID, 0x1172)
pcie.cfg_read16 (DEVICE_ID, 0x0004)
pcie.cfg_write32(BAR0, 0xFFFFFFFF)
pcie.cfg_read32 (BAR0)

In the above example, all configuration access command doesn’t exit until the corresponding completion packet is
returned.

There is a special case that it exits and goes to next command even if the completion packet is returned. It is the
time-out by is_completion_wait parameter. If the time-out happens, the command is forced to be terminated
and DrivExpress goes to next command.

See Also:

1. Issues next command after receiving completion packet -Part 1-

2. Non-Posted Request FIFO

3. Non-posted TLP request time-out parameter

4. Completion packet wait parameter

4.6. Issues next command after receiving completion packet -Part 2- 65

DrivExpress DPI Library, Version 1.0

4.7 Sets Read Completion Boundary to 128 bytes

When DrivExpress receives memory read TLP from Endpoint device, it returns multiple completion TLPs split by 64
bytes boundary of target address.

For example, when DrivExpress receives the request which is 256 bytes read from memory address 0x1020, it returns
the following 5 completion TLPs split by 64 bytes address boundary.

1 Completion TLP including 32 bytes data from address 0x1020 to 0x103F
2 Completion TLP including 64 bytes data from address 0x1040 to 0x107F
3 Completion TLP including 64 bytes data from address 0x1080 to 0x10BF
4 Completion TLP including 64 bytes data from address 0x10C0 to 0x10FF
5 Completion TLP including 32 bytes data from address 0x1100 to 0x111F

This behavior can be changed by the combination of is_rcb_multi_completions and is_rcb_128byte
parameters of Root Complex class.

The is_rcb_multi_completions is a parameter which determines whether DrivExpress returns multiple com-
pletion TLPs split by Read Completion Boundary (hereinafter referred to as RCB). When True, returned completion
TLP is split by RCB.

The other parameter is_rcb_128byte is valid only when is_rcb_multi_completions parameter is True
and it determines whether RCB is 64 bytes or 128 bytes.

By default, 64 bytes RCB is valid. This is because that RCB field of Link Control register of Endpoint device is 64 by
default. To change that to 128 bytes RCB, execute the followings.

Use 128 bytes RCB for completion TLP sent from Root Complex
pcie.is_rcb_multi_completions = True # Enable multiple completions by RCB size
pcie.is_rcb_128byte = True # same as ‘pcie.is_rcb_64byte = False‘
pcie.cfg_write16(PCIE_LINK_CONTROL, RCB_128)

When RCB is set to 128 bytes, DrivExpress returns the following 3 completion TLPs for the 256 bytes read request
from memory address 0x1020.

1 Completion TLP including 96 bytes data from address 0x1020 to 0x107F
2 Completion TLP including 128 bytes data from address 0x1080 to 0x10FF
3 Completion TLP including 32 bytes data from address 0x1100 to 0x111F

The log output is shown below. We can see that DrviExpress returns 3 completion TLPs split by 128 bytes address
boundary for 256 bytes read request from memory address 0x1020.

===
DrivExpress INFO from PCIe TL > Time 124473.000000: Ingress Memory Read TLP
===
Transaction Descriptor (ID): 00010818
Memory Read TLP - 32bit Address

Fmt&Type:00, TC:0, TD:0, EP:0, Attr:0, Length:040
RequesterID:0108, Tag:18, LastDwBE:F, 1stDwBE:F
Address:00001020

0000: 00 00 00 40
0004: 01 08 18 FF
0008: 00 00 10 20

66 Chapter 4. Cookbook

DrivExpress DPI Library, Version 1.0

===
DrivExpress INFO from PCIe TL > Time 124473.000000: Egress Completion with Data TLP
===
Transaction Descriptor (ID): 00010818
Completion With Data TLP

Fmt&Type:4A, TC:0, TD:0, EP:0, Attr:0, Length:018
CompleterID:0000, ComplStatus:0, BCM:0, ByteCount:100
RequesterID:0108, Tag:18, LowerAddress:20

0000: 4A 00 00 18
0004: 00 00 01 00
0008: 01 08 18 20
000C: 00 01 02 03

:
0068: 5C 5D 5E 5F
===
DrivExpress INFO from PCIe TL > Time 124473.000000: Egress Completion with Data TLP
===
Transaction Descriptor (ID): 00010818
Completion With Data TLP

Fmt&Type:4A, TC:0, TD:0, EP:0, Attr:0, Length:020
CompleterID:0000, ComplStatus:0, BCM:0, ByteCount:0A0
RequesterID:0108, Tag:18, LowerAddress:00

0000: 4A 00 00 20
0004: 00 00 00 A0
0008: 01 08 18 00
000C: 60 61 62 63

:
0088: DC DD DE DF
===
DrivExpress INFO from PCIe TL > Time 124473.000000: Egress Completion with Data TLP
===
Transaction Descriptor (ID): 00010818
Completion With Data TLP

Fmt&Type:4A, TC:0, TD:0, EP:0, Attr:0, Length:008
CompleterID:0000, ComplStatus:0, BCM:0, ByteCount:020
RequesterID:0108, Tag:18, LowerAddress:00

0000: 4A 00 00 08
0004: 00 00 00 20
0008: 01 08 18 00
000C: E0 E1 E2 E3

:
0028: FC FD FE FF

Tip:

1. To set back to 64 bytes RCB, you can also do it by setting is_rcb_64byte parameter to True instead
of setting is_rcb_128byte parameter to False. Because is_rcb_64byte and is_rcb_128byte
parameters are exclusive each other, the other is Flase whenever one is True.

2. According to PCI Express specification, only RCB value of Root Complex side (DrivExpress) can be changed.
The RCB value of Endpoint side is always 128 bytes.

4.7. Sets Read Completion Boundary to 128 bytes 67

DrivExpress DPI Library, Version 1.0

See Also:

1. Transmits completion TLP including max payload size data

2. 128 bytes Read Completion Boundary enabling parameter

3. Read Completion Boundary enabling parameter

68 Chapter 4. Cookbook

DrivExpress DPI Library, Version 1.0

4.8 Transmits completion TLP including max payload size data

To return completion TLP(s) without splitting by RCB address for memory read TLP from Endpoint device, set
is_rcb_multi_completions parameter of Root Complex class to False.

pcie.is_rcb_multi_completions = False

By the above setting, DrivExpress issues completion TLP which payload size is up to max payload size.

The following is log output for receiving 256 bytes read request from memory address 0x1020 when max payload size
is 256 bytes. We can see that DrivExpress returns the completion TLP with max payload size data (256 bytes) without
splitting by 64 or 128 bytes address boundary (0x1040 or 0x1080, etc).

===
DrivExpress INFO from PCIe TL > Time 17824.000000: Ingress Memory Read TLP
===
Transaction Descriptor (ID): 0001081C
Memory Read TLP - 32bit Address

Fmt&Type:00, TC:0, TD:0, EP:0, Attr:0, Length:040
RequesterID:0108, Tag:1C, LastDwBE:F, 1stDwBE:F
Address:00001020

0000: 00 00 00 40
0004: 01 08 1C FF
0008: 00 00 10 20
===
DrivExpress INFO from PCIe TL > Time 17824.000000: Egress Completion with Data TLP
===
Transaction Descriptor (ID): 0001081C
Completion With Data TLP

Fmt&Type:4A, TC:0, TD:0, EP:0, Attr:0, Length:040
CompleterID:0000, ComplStatus:0, BCM:0, ByteCount:100
RequesterID:0108, Tag:1C, LowerAddress:20

0000: 4A 00 00 40
0004: 00 00 01 00
0008: 01 08 1C 20
000C: 00 01 02 03

:
0108: FC FD FE FF

See Also:

1. Sets Read Completion Boundary to 128 bytes

2. Read Completion Boundary enabling parameter

4.8. Transmits completion TLP including max payload size data 69

DrivExpress DPI Library, Version 1.0

4.9 Expands tag field to 8-bit

The total count of non-posted TLP, which can be issued to Endpoint device in advance, is up to 32 by default. To
expand it to 256, it is necessary to expand tag field from 5-bit to 8-bit.

The following 2 processes are necessary to expand tag field to 8-bit.

• Set is_extended_tag parameter of Root Complex class to True.

• Set Extended Tag Field Enable bit of Device Control register of Endpoint device to 1.

Extend tag field from 5-bit to 8-bit
pcie.is_extended_tag = True
pcie.cfg_write16(PCIE_DEVICE_CONTROL, EXTENDED_TAG_ENABLE)

The following is log output for executing mem_read() command, which reads 32896 bytes (128 × 257 = 32896)
from address 0x20000000, when max payload size is 128 bytes.

We can see that DrivExpress issues 256 memory read TLPs, which tag number is from 0 to 255(0xFF), in a row
without waiting for completion TLP. Because of space limitations, the memory read TLPs of tag number from 2 to
254 have been omitted.

===
DrivExpress INFO from PCIe TL > Time 16900.000000: Egress Memory Read TLP
===
Transaction Descriptor (ID): 00000000
Memory Read TLP - 32bit Address

Fmt&Type:00, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:00, LastDwBE:F, 1stDwBE:F
Address:20000000

0000: 00 00 00 20
0004: 00 00 00 FF
0008: 20 00 00 00
===
DrivExpress INFO from PCIe TL > Time 16900.000000: Egress Memory Read TLP
===
Transaction Descriptor (ID): 00000001
Memory Read TLP - 32bit Address

Fmt&Type:00, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:01, LastDwBE:F, 1stDwBE:F
Address:20000080

0000: 00 00 00 20
0004: 00 00 01 FF
0008: 20 00 00 80

:

===
DrivExpress INFO from PCIe TL > Time 16900.000000: Egress Memory Read TLP
===
Transaction Descriptor (ID): 000000FF
Memory Read TLP - 32bit Address

70 Chapter 4. Cookbook

DrivExpress DPI Library, Version 1.0

Fmt&Type:00, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:FF, LastDwBE:F, 1stDwBE:F
Address:20007F80

0000: 00 00 00 20
0004: 00 00 FF FF
0008: 20 00 7F 80
===
DrivExpress INFO from PCIe TL > Time 36948.000000: Ingress Completion with Data TLP
===
Transaction Descriptor (ID): 00000000
Completion With Data TLP

Fmt&Type:4A, TC:0, TD:0, EP:0, Attr:0, Length:020
CompleterID:0108, ComplStatus:0, BCM:0, ByteCount:080
RequesterID:0000, Tag:00, LowerAddress:00

0000: 4A 00 00 20
0004: 01 08 00 80
0008: 00 00 00 00
000C: 00 01 02 03

:
0088: 7C 7D 7E 7F
===

:
===
DrivExpress INFO from PCIe TL > Time 36948.000000: Egress Memory Read TLP
===
Transaction Descriptor (ID): 00000000
Memory Read TLP - 32bit Address

Fmt&Type:00, TC:0, TD:0, EP:0, Attr:0, Length:020
RequesterID:0000, Tag:00, LastDwBE:F, 1stDwBE:F
Address:20008000

0000: 00 00 00 20
0004: 00 00 00 FF
0008: 20 00 80 00

Note: It is necessary that Endpoint device supports Extended Tag Field Enable bit.

See Also:

1. Relationship between Memory Read TLP and Tag Field

2. Extended tag field enabling parameter

4.9. Expands tag field to 8-bit 71

DrivExpress DPI Library, Version 1.0

4.10 Adds CRC in Transaction Layer

To add End-to-end CRC (hereinafter referred to as ECRC) as TLP digest in transaction layer, set is_ecrc parameter
of Root Complex to True.

pcie.is_ecrc = True

To check whether ECEC is added actually, the following code issues two memory write TLPs, which one is without
ECRC and the other is with ECRC.

pcie.is_report_mem_write_tlp = False # Disable memory write TLP report
pcie.is_watch_egress_tlp = True # Enable egress TLP watch

pcie.mem_write32(0x20000000, 0x55555555) # Memory write TLP without ECRC
sim.run_string("pcie.is_ecrc = True") # Enable ECRC
pcie.mem_write32(0x20000000, 0x55555555) # Memory write TLP with ECRC

The log output is shown below. We can see that the size of second memory write TLP is increasing because of 4 bytes
ECRC.

DrivExpress INFO from PCIe DLL/PL> Time 16890.000000: Egress TLP
00 11 40 00 00 01 00 00
00 0F 20 00 00 00 55 55
55 55 2A 00 A2 68
DrivExpress INFO from PCIe DLL/PL> Time 16910.000000: Egress TLP
00 12 40 00 80 01 00 00
00 0F 20 00 00 00 55 55
55 55 EE 39 86 F0 E0 E6
98 29

Tip:

1. To check ECEC on log output, check-type parameter is_watch_egress_tlp should be valid.

2. Because parameter setting is executed instantly when interpreted, run_string() command is used about
setting is_ecrc parameter.

See Also:

1. Controls DrivExpress log output

2. Delayed Parameter Setting

3. End-to-end CRC enabling parameter

72 Chapter 4. Cookbook

DrivExpress DPI Library, Version 1.0

4.11 Changes requester ID

To change the requester ID of TLP issued by DrivExpress, set the changed value to requester_id parameter of
Root Complex class.

The code of setting requester ID to 0x55AA is as follows.

pcie.requester_id = 0x55AA

As a reference, log output of memory read TLP issued by DrivExpress after changing requester ID is shown below.
We can see that RequesterID:55AA is printed out in the log.

===
DrivExpress INFO from PCIe TL > Time 16890.000000: Egress Memory Read TLP
===
Transaction Descriptor (ID): 0055AA00
Memory Read TLP - 32bit Address

Fmt&Type:00, TC:0, TD:0, EP:0, Attr:0, Length:001
RequesterID:55AA, Tag:00, LastDwBE:0, 1stDwBE:F
Address:20000000

0000: 00 00 00 01
0004: 55 AA 00 0F
0008: 20 00 00 00

See Also:

Requester ID setting parameter

4.11. Changes requester ID 73

DrivExpress DPI Library, Version 1.0

4.12 Specifies Bus number, Device number, and Function number

To change the bus number, device number, and function number of configuration TLP issued by DrivExpress, set the
changed value to bus_num, device_num, and function_num parameters.

The code of setting bus number to 3, device number to 2, function number to 1 is as follows.

pcie.bus_num = 3
pcie.device_num = 2
pcie.function_num = 1

Execute config write command once at least after change
pcie.cfg_write16(COMMAND, (PERR_RESPONSE | BUS_MASTER_ENABLE | MEM_SPACE_ENABLE))

Wait for completion for first config write command after change
pcie.completion_wait()

As a reference, log output of configuration write TLP issued by DrivExpress after changing the values is shown below.
We can see that BusNum:03, DevNum:2, FuncNum:1 is printed out in the log.

===
DrivExpress INFO from PCIe TL > Time 16180.000000: Egress Config Write TLP
===
Transaction Descriptor (ID): 0000000C
Config Write TLP

Fmt&Type:44, TD:0, EP:0, Attr:0, Length:001
RequesterID:0000, Tag:0C, LastDwBE:0, 1stDwBE:3
BusNum:03, DevNum:2, FuncNum:1, RegisterNum:004

0000: 44 00 00 01
0004: 00 00 0C 03
0008: 03 11 00 04
000C: 46 00 00 00

See Also:

1. Bus number setting parameter

2. Device number setting parameter

3. Function number setting parameter

74 Chapter 4. Cookbook

DrivExpress DPI Library, Version 1.0

4.13 Waits until PCI Express Link is ready

By using link_event_wait() command of Root Complex class, it can wait until PCI Express bus goes to the
link state specified by users. Because all other commands of Root Complex class can not be executed until the link
state is ready, it is usual that link_event_wait() command is called at the beginning of the code.

The code example is shown below.

1 # Link Event Monitor Function
2 def link_event_monitor(time, link_state):
3 if (link_state == LINK_DETECT):
4 sim.imsg("---> [Time " + str(time) + "] PCIe Link Detect")
5 elif (link_state == LINK_TS1_EXCHANGE):
6 sim.imsg("---> [Time " + str(time) + "] PCIe Link TS1 Exchange")
7 elif (link_state == LINK_TS2_EXCHANGE):
8 sim.imsg("---> [Time " + str(time) + "] PCIe Link TS2 Exchange")
9 elif (link_state == LINK_CONFIG_LINKWIDTH):

10 sim.imsg("---> [Time " + str(time) + "] PCIe Link Config Linkwidth")
11 elif (link_state == LINK_CONFIG_LINKWIDTH_ACCEPT):
12 sim.imsg("---> [Time " + str(time) + "] PCIe Link Config Linkwidth Accept")
13 elif (link_state == LINK_CONFIG_COMPLETE):
14 sim.imsg("---> [Time " + str(time) + "] PCIe Link Config Complete")
15 elif (link_state == LINK_CONFIG_IDLE):
16 sim.imsg("---> [Time " + str(time) + "] PCIe Link Config Idle")
17 elif (link_state == LINK_UP):
18 sim.imsg("---> [Time " + str(time) + "] PCIe Link Up")
19 elif (link_state == LINK_RECOVERY_RCVRLOCK):
20 sim.imsg("---> [Time " + str(time) + "] PCIe Link Recovery Receiver Lock")
21 elif (link_state == LINK_RECOVERY_RCVRCFG):
22 sim.imsg("---> [Time " + str(time) + "] PCIe Link Recovery Receiver Config")
23 elif (link_state == LINK_RECOVERY_SPEED):
24 sim.imsg("---> [Time " + str(time) + "] PCIe Link Recovery Speed")
25 elif (link_state == LINK_RECOVERY_IDLE):
26 sim.imsg("---> [Time " + str(time) + "] PCIe Link Recovery Idle")
27 elif (link_state == LINK_FLOW_CONTROL_INIT):
28 sim.imsg("---> [Time " + str(time) + "] PCIe Link Flow Control Init")
29 elif (link_state == LINK_READY):
30 sim.imsg("---> [Time " + str(time) + "] PCIe Link Ready\n")
31 else:
32 sim.imsg("---> [Time " + str(time) + "] ERROR!!! Unknown PCIe Link Event")
33

34 # Wait until link is ready, or timeout if 5000 clks elapsed
35 pcie.link_event_wait(LINK_READY, 5000, link_event_monitor)
36

37 # check VENDOR and DEVICE ID
38 pcie.cfg_read16(VENDOR_ID, 0x1172)

For the first argument of link_event_wait() command, the link state, which exists from this command, is
specified. Because the pre-defined macros are prepared about this link state, one of them is selected and passed to the
first argument. In most cases, LINK_READY macro, which appears that link is ready, is set.

For the second argument, time-out value is specified on command clock basis. If DrivExpress has not gone to the
specified link state yet after passing of time by the time-out value, link_event_wait() command is terminated
and DrivExpress goes to next command. This time-out argument is option. If the argument is omitted, it waits for the
link state forever.

4.13. Waits until PCI Express Link is ready 75

DrivExpress DPI Library, Version 1.0

Last argument is also option. For this argument, the function, which is called back whenever link state has changed,
is specified. Because main purpose of this function is just checking the status of link state transition, it is called as
link monitor function. Users can name this link monitor function anything they want. This function must have the
following 2 arguments.

Argument Name The contents which has been set when called
time Simulation time of transition to new link state
link_state New link state (pre-defined macro)

When link monitor function is called, these two arguments are passed so that users can monitor the link state transition.
Although it is up to users whether these arguments are used, it is usual that the status of link state transition is printed
out by using these arguments like the above sample code.

Pre-defined link state macros, which can be used by link_event_wait() command and link monitor function, is
shown below.

Macro Name Value Link State
LINK_DETECT 0 Link Detect State
LINK_TS1_EXCHANGE 1 Link TS1 Exchange State
LINK_TS2_EXCHANGE 2 Link TS2 Exchange State
LINK_CONFIG_LINKWIDTH 3 Link Configuration Link Width State
LINK_CONFIG_LINKWIDTH_ACCEPT 4 Link Configuration Link Width Accept State
LINK_CONFIG_COMPLETE 5 Link Configuration Complete State
LINK_CONFIG_IDLE 6 Link Configuration Idle State
LINK_RECOVERY_RCVRLOCK 7 Link Recovery Receiver Lock State
LINK_RECOVERY_RCVRCFG 8 Link Recovery Configuration State
LINK_RECOVERY_SPEED 9 Link Recovery Speed State
LINK_RECOVERY_IDLE 10 Link Recovery Idle State
LINK_UP 11 Link Up State
LINK_FLOW_CONTROL_INIT 12 Link Flow Control Initialization State
LINK_READY 13 Link Ready State

The log output for the above sample code is shown below. We can see that the link monitor function is called per link
state transition and configuration access command cfg_read16() is executed after link is ready.

---> [Time 3596.0] PCIe Link Detect
---> [Time 3656.0] PCIe Link TS1 Exchange
---> [Time 5768.0] PCIe Link TS2 Exchange
---> [Time 6920.0] PCIe Link Config Linkwidth
---> [Time 7432.0] PCIe Link Config Linkwidth Accept
---> [Time 7944.0] PCIe Link Config Complete
---> [Time 9176.0] PCIe Link Config Idle
---> [Time 9244.0] PCIe Link Up
---> [Time 9624.0] PCIe Link Recovery Receiver Lock
---> [Time 10136.0] PCIe Link Recovery Receiver Config
---> [Time 12184.0] PCIe Link Recovery Speed
---> [Time 13196.0] PCIe Link Recovery Receiver Lock
---> [Time 13452.0] PCIe Link Recovery Receiver Config
---> [Time 15526.0] PCIe Link Recovery Idle
---> [Time 15564.0] PCIe Link Up
---> [Time 15564.0] PCIe Link Flow Control Init
---> [Time 16154.0] PCIe Link Ready

DrivExpress INFO from PCIe TL > Time 16190.000000: Egress Config Read TLP
===
Transaction Descriptor (ID): 00000000
Config Read TLP

76 Chapter 4. Cookbook

DrivExpress DPI Library, Version 1.0

Fmt&Type:04, TD:0, EP:0, Attr:0, Length:001
RequesterID:0000, Tag:00, LastDwBE:0, 1stDwBE:3
BusNum:01, DevNum:1, FuncNum:0, RegisterNum:000

0000: 04 00 00 01
0004: 00 00 00 03
0008: 01 08 00 00

Note:

1. Please note that queue-type command can not be used in the link monitor function. On the other hand, icommand
can be used. In fact, there is no case that users execute queue-type command under the condition that link is not
ready.

2. To tell you the truth, users can name not only link monitor function but also the arguments anything they want.
However, note that irrelevant name will lead to the deterioration of readability.

See Also:

1. Command Queue and Command Type

2. Link event detection command

4.13. Waits until PCI Express Link is ready 77

DrivExpress DPI Library, Version 1.0

4.14 Dumps the contents of host memory

To dump the contents of host memory, dump() or idump() command can be used. The idump() command is
icommand version of dump() command. Because only difference between those is the execution timing, we will
explain dump() command here.

The dump() command is provided by Host Memory class and it has 2 arguments. For the first argument, start offset
address is specified. For the next argument, dump byte size is specified.

The sample code is as follows. After creating the instance hmem of Host Memory class and writing 32 bytes incre-
mental data to the offset address 0x10, it dumps 64 bytes data from the head (offset address 0x00).

Memory area 0x10000000-0x1000FFFF, initial value is 0x55
hmem = HostMemory(0x10000000, 0x1000FFFF, 0x55)

incr_data = [i for i in range(32)] # 32 byte increment data
hmem.iwrite(0x10, 32, incr_data) # write 32 byte increment data to offset 0x10
hmem.dump(0x00, 64) # dump 64 byte data from offset 0x00

The log output for the above sample code is shown below. We can see that 64 bytes from the offset address 0 are
dumped. Because hmem is initialized by 0x55 when instantiation, the area except for offset address 0x10 to 0x2F,
which has been written by incremental data, remains all 0x55.

start virtual address : 0x10000000
end virtual address : 0x1000FFFF
total area size : 0x00010000

data offset : 0x00000000
data size : 0x00000040

00 01 02 03 04 05 06 07 - 08 09 0A 0B 0C 0D 0E 0F

00000000: 55 55 55 55 55 55 55 55 - 55 55 55 55 55 55 55 55
00000010: 00 01 02 03 04 05 06 07 - 08 09 0A 0B 0C 0D 0E 0F
00000020: 10 11 12 13 14 15 16 17 - 18 19 1A 1B 1C 1D 1E 1F
00000030: 55 55 55 55 55 55 55 55 - 55 55 55 55 55 55 55 55

See Also:

1. Dumps the contents of host memory to file

2. Loads the contests of host memory from file

3. Memory dump command

78 Chapter 4. Cookbook

DrivExpress DPI Library, Version 1.0

4.15 Dumps the contents of host memory to file

To dump the contents of host memory to file, write_file() or iwrite_file() command can be used. The
iwrite_file() command is icommand version of write_file() command. Because only difference between
those is the execution timing, we will explain write_file() command here.

The write_file() command is provided by Host Memory class and it has 3 arguments. For the first argument,
file name to which the contents are dumped is specified. For the second argument, start offset address is specified. For
the last argument, dump byte size is specified.

The sample code is as follows. After creating the instance hmem of Host Memory class and writing 32 bytes in-
cremental data to the offset address 0x10, it dumps 64 bytes data from the head (offset address 0x00) to dump.txt
file.

Memory area 0x10000000-0x1000FFFF, initial value is 0x55
hmem = HostMemory(0x10000000, 0x1000FFFF, 0x55)

incr_data = [i for i in range(32)] # 32 byte increment data
hmem.iwrite(0x10, 32, incr_data) # write 32 byte increment data to offset 0x10
hmem.write_file("dump.txt", 0x00, 64) # dump leading 64 byte data to file

The contents of dump.txt file, which has been created by executing the above code, is shown below. We can see that 64
bytes from the offset address 0 are dumped. Because hmem is initialized by 0x55 when instantiation, the area except
for offset address 0x10 to 0x2F, which has been written by incremental data, remains all 0x55.

start virtual address : 0x10000000
end virtual address : 0x1000FFFF
total area size : 0x00010000

data offset : 0x00000000
data size : 0x00000040

00 01 02 03 04 05 06 07 - 08 09 0A 0B 0C 0D 0E 0F

00000000: 55 55 55 55 55 55 55 55 - 55 55 55 55 55 55 55 55
00000010: 00 01 02 03 04 05 06 07 - 08 09 0A 0B 0C 0D 0E 0F
00000020: 10 11 12 13 14 15 16 17 - 18 19 1A 1B 1C 1D 1E 1F
00000030: 55 55 55 55 55 55 55 55 - 55 55 55 55 55 55 55 55

See Also:

1. Dumps the contents of host memory

2. Loads the contests of host memory from file

3. Write memory file command

4.15. Dumps the contents of host memory to file 79

DrivExpress DPI Library, Version 1.0

4.16 Loads the contests of host memory from file

To load the contents of host memory from file, read_file() or iread_file() command can be used. The
iread_file() command is icommand version of read_file() command. Because only difference between
those is the execution timing, we will explain read_file() command here.

The read_file() command is provided by Host Memory class and it has a argument to which file name is specified.
The contents of file must be the same format output in dump() or write_file() command.

The sample code is as follows. After creating the instance hmem of Host Memory class and writing 32 bytes incre-
mental data to the offset address 0x10, it dumps 64 bytes data from the head (offset address 0x00) to check initial
value. And, it dumps 64 bytes data again for the same area after loading the contents from dump.txt file.

Memory area 0x10000000-0x1000FFFF, initial value is 0x55
hmem = HostMemory(0x10000000, 0x1000FFFF, 0x55)

hmem.dump(0x00, 64) # dump 64 byte data from offset 0x00
hmem.read_file("dump.txt") # read memory contents from file
hmem.dump(0x00, 64) # dump 64 byte data from offset 0x00 again

The log output for the above sample code is shown below. From the result of second dump, we can see that the contents
of file has been loaded. In this example, we used the file which was output at the section “Dumps the contents of host
memory to file”.

start virtual address : 0x10000000
end virtual address : 0x1000FFFF
total area size : 0x00010000

data offset : 0x00000000
data size : 0x00000040

00 01 02 03 04 05 06 07 - 08 09 0A 0B 0C 0D 0E 0F

00000000: 55 55 55 55 55 55 55 55 - 55 55 55 55 55 55 55 55
00000010: 55 55 55 55 55 55 55 55 - 55 55 55 55 55 55 55 55
00000020: 55 55 55 55 55 55 55 55 - 55 55 55 55 55 55 55 55
00000030: 55 55 55 55 55 55 55 55 - 55 55 55 55 55 55 55 55

start virtual address : 0x10000000
end virtual address : 0x1000FFFF
total area size : 0x00010000

data offset : 0x00000000
data size : 0x00000040

00 01 02 03 04 05 06 07 - 08 09 0A 0B 0C 0D 0E 0F

00000000: 55 55 55 55 55 55 55 55 - 55 55 55 55 55 55 55 55
00000010: 00 01 02 03 04 05 06 07 - 08 09 0A 0B 0C 0D 0E 0F
00000020: 10 11 12 13 14 15 16 17 - 18 19 1A 1B 1C 1D 1E 1F
00000030: 55 55 55 55 55 55 55 55 - 55 55 55 55 55 55 55 55

80 Chapter 4. Cookbook

DrivExpress DPI Library, Version 1.0

See Also:

1. Dumps the contents of host memory

2. Dumps the contents of host memory to file

3. Read memory file command

4.16. Loads the contests of host memory from file 81

DrivExpress DPI Library, Version 1.0

4.17 Waits for host memory access from Endpoint device

By using event_wait() command of Host Memory class, it can wait until Endpoint device does the specific read
or write access for the relevant host memory instance.

For the first argument of event_wait() command, the function, which is called whenever the relevant host memory
instance is accessed, is specified. In this function, the event detection code, which determines if event_wait()
command exits from the waiting state by that event, should be implemented. Because of this, this function is called as
event detector function. Users can name this event detector function anything they want. This function must have 4
arguments, which are time, rw, addr, and data

For the second argument, time-out value is specified on command clock basis. If DrivExpress has not received True
yet from the registered event detector function after passing of time by the time-out value, event_wait() command
is terminated and DrivExpress goes to next command. This time-out argument is option. If the argument is omitted, it
waits forever until the event detector function returns True.

The code example is shown below.

1 # Memory area 0x10000000-0x1000FFFF, initial value is 0x55
2 hmem = HostMemory(0x10000000, 0x1000FFFF, 0x55)
3

4 # Event Detector Function:
5 # Waiting event is write access to offset address 0x10 by data 0x1234
6 def event_condition(time, rw, addr, data):
7 if (rw == WORD_WRITE) and (addr == 0x10) and (data == 0x1234):
8 return True # Event happens !
9 else:

10 return False # Not desired event
11

12 #--
13 # Put code here to let DUT do write access to
14 # 0x10000010 memory address by data 0x1234
15 #--
16

17 # Wait until the event condition happens
18 hmem.event_wait(event_condition)
19

20 #--
21 # Put code here after the event
22 #--

In the above example, the event detector function is defined by the name of event_condition after creating
the instance hmem of Host Memory class. At the line number 18, this event detector function is registered for
event_wait() command of hmem instance. This will call event_condition function whenever Endpoint
device accesses to memory area of hmem.

The event detector function checks the content of memory access and determines if it is the waiting event. If it is the
waiting event, this function returns True, otherwise returns Flase. To be able to check the event type, the following
4 arguments are passed to the event detector function.

Argument Name The contents which has been set when called
time Simulation time of occurrence of memory access
rw Memory access type (pre-defined macro)
addr Offset address
data Written data or read data

82 Chapter 4. Cookbook

DrivExpress DPI Library, Version 1.0

It is up to users whether these arguments are used. The behavior of event_wait() is that it exits from the waiting
state and goes to next command if the registered event detector function returns True, otherwise waits for the event.
In the sample code, it is waiting for the event which is 16-bit memory write access by 0x1234 data for offset address
0x10 of hmem memory. More precisely, it is waiting for the event that Endpoint device writes 16-bit 0x1234 data to
memory address 0x10000010. The following pre-defined macros are prepared to check memory access type argument
rw.

Macro Name Value Memory Access Type
BYTE_READ 0 8-bit read access
BYTE_WRITE 1 8-bit write access
WORD_READ 2 16-bit read access
WORD_WRITE 3 16-bit write access
DWORD_READ 4 32-bit read access
DWORD_WRITE 5 32-bit write access

Note:

1. Please note that queue-type command can not be used in the event detector function. On the other hand,
icommand can be used. In fact, it doesn’t much make sense to use queue-type command in the event detector
function. Using queue-type command at the timing of the event detection is same as writing such a code after
exiting from event_wait() command. Writing the code to handle the event in the event detector function
will lead to the deterioration of readability because it is hard to understand the entire code flow.

2. Only queue-type command is blocked by event_wait() command. Because icommand or parameter setting
are executed instantly without queueing, those are not blocked.

3. To tell you the truth, users can name not only event detector function but also the arguments anything they want.
However, note that irrelevant name will lead to the deterioration of readability.

See Also:

Memory access event wait command

4.17. Waits for host memory access from Endpoint device 83

DrivExpress DPI Library, Version 1.0

4.18 Registers callback function for host memory access

By using event_callback() command of Host Memory class, it can call the pre-registered function when End-
point device does the specific read or write access for the relevant host memory instance. This pre-registered function
is called as callback function.

For the first argument of event_callback() command, the function, which is called whenever the relevant host
memory instance is accessed, is specified. In this function, the event detection code, which determines if the callback
function is called by that event, should be implemented. Because of this, this function is called as event detector
function. Because this event detector function is almost same as the one explained at the section “Waits for host memory
access from Endpoint device”, please refer to it in detail. The difference is the behavior of being returned True. It
breaks the waiting status for event_wait() command, but it calls the callback function for event_callback()
command.

For the second argument, the function, which is called back when the memory access event happens, is specified. This
is callback function.

Last argument is option. When specified, it is passed to the callback function as an argument.

The code example is shown below.

1 # Memory area 0x10000000-0x1000FFFF, initial value is 0x55
2 hmem = HostMemory(0x10000000, 0x1000FFFF, 0x55)
3

4 # Event Detector Function:
5 # Waiting event is write access to offset address 0x10 by data 0x1234
6 def event_condition(time, rw, addr, data):
7 if (rw == WORD_WRITE) and (addr == 0x10) and (data == 0x1234):
8 return True # Event happens !
9 else:

10 return False # Not desired event
11

12 # Event Handler Function:
13 # Called by the event of write access to address 0x10000010 by data 0x1234
14 def event_handler():
15 sim.msg("\n\n%%%%%%%%%%%% Enter Event Handler %%%%%%%%%%%%\n\n")
16 #====================================
17 # Put code here to handle the event
18 #====================================
19 sim.msg("\n\n%%%%%%%%%%%% Exit Event Handler %%%%%%%%%%%%\n\n")
20

21 # Regsiter callback function for the event condition (Not enabled yet)
22 ev_hmem = hmem.event_callback(event_condition, event_handler)
23

24 # Enable the event_callback() command
25 hmem.enable_event(ev_hmem)
26

27 #--
28 # Put code here to let DUT do write access to
29 # 0x10000010 memory address by data 0x1234
30 #--

In the above example, after creating the instance hmem of Host Memory class, the event detector function is defined
by the name of event_condition and the callback function is defined by the name of event_handler. At the
line number 22, those functions are registered for event_callback() command of hmem instance.

84 Chapter 4. Cookbook

DrivExpress DPI Library, Version 1.0

The event_callback() command returns event ID. Users can name this event ID anything they want. By using
this event ID, users can disable the corresponding event_callback() until a certain point of the code or enable
it from a certain point conversely. By default, event_callback() is disabled, so event detector function is never
called even if Endpoint device accesses to the relevant host memory address. To enable event_callback()
command, it is necessary to execute enable_event() command by specifying the event ID returned by the
event_callback() command. At the line number 25 of the sample code, the event_callback() is enabled
by executing enable_event() command with ev_hmem event ID. This will call event_condition function
whenever Endpoint device accesses to memory area of hmem.

In the event detector function event_condition of the sample code, it returns True at the event of 16-bit mem-
ory write access by 0x1234 data for offset address 0x10 of hmem memory. At the event, the callback function
event_handler is called. More precisely, event_handler is called back when Endpoint device writes 16-
bit 0x1234 data to memory address 0x10000010. In this example, although two messages are just printed out because
two msg() commands are only implemented in the callback function, it is usual to implement the code of processing
the event.

Note:

1. Unlike the event detector function, queue-type command can be used in the callback function. Because the
callback function is called asynchronously during processing other code like interrupt handler, it is necessary
that the all codes of handling the event are written in it.

2. If event_callback() command is enabled, the callback function is called back whenever the event
detector function returns True. To avoid this, it is necessary to disable the event_callback()
by disable_event() command. In the case of handling the event only once, you may call this
disable_event() command at the head of the callback function.

3. To use multiple event_callback() commands, please do not use same variable to store each event ID. For
example, if the following codes are executed, only second event_callback() command is enabled. This
is because the first event ID is overwritten with the event ID of the second.

ev_hmem = hmem.event_callback(event_condition1, event_handler1)
ev_hmem = hmem.event_callback(event_condition2, event_handler2)
hmem.enable_event(ev_hmem)

4. As a matter of fact, event_callback() is a immediate type command although it doesn’t have prefix i.
The event detector function and the callback function are registered within DrivExpress instantly when it is
interpreted. On the other hand, enable_event() and disable_event() are queue-type commands.

See Also:

1. Waits for host memory access from Endpoint device

2. MSI Interrupt Handling

3. Memory access event callback command

4. Event enabling command

5. Event disabling command

4.18. Registers callback function for host memory access 85

DrivExpress DPI Library, Version 1.0

86 Chapter 4. Cookbook

CHAPTER

FIVE

CLASS REFERENCES

In this chapter, all commands and parameters of Root Complex class, Host Memory class, and Simulation Control
class are explained. In addition to this, macros which have been defined by DrivExpress by default are also introduced
late in this chapter.

Some parameters beginning with is_ are boolean type and such parameters have only Ture or False value.

Besides, some commands support optional arguments. No error is raised even if those optional arguments are omitted.
When introducing the command prototype at the beginning of each command explanation, those optional parameters
are enclosed by < > characters like <timeout_clks>.

Some code examples are shown in this chapter. In those examples, it is assumed that Root Complex class, Host
Memory class, and Simulation Control class are instantiated as pcie, hmem, and sim respectively.

87

DrivExpress DPI Library, Version 1.0

5.1 PCI Express Root Complex class

PcieRootComplex()

[Returned Value]

Instance ID ID of PCI Express Root Complex instance

[Sample Code]

pcie = PcieRootComplex() # Create Root Complex instance

Users can name the variable, which stores instance ID, anything they want. Instance of Root Complex class must be
unique. Root Complex class provides the following 4 main functions which controls PCI Express Endpoint device.

1. Detection of link state transition (link event)

2. Configuration space access

3. Memory space access

4. A wide variety of PCI Express related parameters

Table 5.1: Commands and parameters of Root Complex class

No Name Brief Description
1 link_event_wait() Link event detection command
2 cfg_read8() Configuration space 8-bit read command
3 cfg_read16() Configuration space 16-bit read command
4 cfg_read32() Configuration space 32-bit read command
5 cfg_write8() Configuration space 8-bit write command
6 cfg_write16() Configuration space 16-bit write command
7 cfg_write32() Configuration space 32-bit write command
8 mem_read8() Memory space 8-bit read command
9 mem_read16() Memory space 16-bit read command

10 mem_read32() Memory space 32-bit read command
11 mem_read() Memory space read command
12 mem_write8() Memory space 8-bit write command
13 mem_write16() Memory space 16-bit write command
14 mem_write32() Memory space 32-bit write command
15 mem_write() Memory space write command
16 completion_wait() Completion packet wait command
17 is_64bit_address 64-bit memory address enabling parameter
18 is_speed_change Gen2 enabling parameter
19 is_ecrc End-to-end CRC enabling parameter
20 is_rcb_multi_completions Read Completion Boundary enabling parameter
21 is_rcb_128byte 128 bytes Read Completion Boundary enabling parameter
22 is_extended_tag Extended tag field enabling parameter
23 is_4kb_boundary_check 4KB boundary check enabling parameter
24 is_completion_wait Completion packet wait parameter
25 is_mem_write_sync Memory write command synchronization parameter

Continued on next page

88 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

Table 5.1 – continued from previous page
No Name Brief Description
26 is_watch_ingress_dllp Ingress DLLP raw data print enabling parameter
27 is_watch_ingress_tlp Ingress TLP raw data print enabling parameter
28 is_watch_egress_dllp Egress DLLP raw data print enabling parameter
29 is_watch_egress_tlp Egress TLP raw data print enabling parameter
30 is_watch_framer_striper Framer/Striper behavior print enabling parameter
31 is_watch_destriper_deframer De-Striper/De-Framer behavior print enabling parameter
32 is_report_ltssm LTSSM report enabling parameter
33 is_report_init_fc InitFC report enabling parameter
34 is_report_cfg_read_tlp Configuration read TLP report enabling parameter
35 is_report_cfg_write_tlp Configuration write TLP report enabling parameter
36 is_report_mem_read_tlp Memory read TLP report enabling parameter
37 is_report_mem_write_tlp Memory write TLP report enabling parameter
38 is_report_cpl_with_data_tlp Completion with data TLP report enabling parameter
39 is_report_cpl_without_data_tlp Completion without data TLP report enabling parameter
40 requester_id Requester ID setting parameter
41 bus_num Bus number setting parameter
42 device_num Device number setting parameter
43 function_num Function number setting parameter
44 max_payload_size Max Payload Size setting parameter
45 max_fifo_count_egress_tlp Egress TLP FIFO size setting parameter
46 max_fifo_count_ingress_tlp Ingress TLP FIFO size setting parameter
47 proc_wait_clks_egress_tlp Egress TLP FIFO pop timing delay parameter
48 proc_wait_clks_ingress_tlp Ingress TLP FIFO pop timing delay parameter
49 nptlp_timeout_clks Non-posted TLP request time-out parameter

5.1. PCI Express Root Complex class 89

DrivExpress DPI Library, Version 1.0

5.1.1 Link event detection command

link_event_wait(link_state<, timeout_clks, link_monitor>)

[Required Argument]

link_state Link state which terminates wait condition (pre-defined macro)

[Optional Argument]

timeout_clks Time-out clock count (command clock basis)
link_monitor Link monitor function called whenever link state transition happens

[Pre-defined Macro]

Macro Name Value Link State
LINK_DETECT 0 Link Detect State
LINK_TS1_EXCHANGE 1 Link TS1 Exchange State
LINK_TS2_EXCHANGE 2 Link TS2 Exchange State
LINK_CONFIG_LINKWIDTH 3 Link Configuration Link Width State
LINK_CONFIG_LINKWIDTH_ACCEPT 4 Link Configuration Link Width Accept State
LINK_CONFIG_COMPLETE 5 Link Configuration Complete State
LINK_CONFIG_IDLE 6 Link Configuration Idle State
LINK_RECOVERY_RCVRLOCK 7 Link Recovery Receiver Lock State
LINK_RECOVERY_RCVRCFG 8 Link Recovery Configuration State
LINK_RECOVERY_SPEED 9 Link Recovery Speed State
LINK_RECOVERY_IDLE 10 Link Recovery Idle State
LINK_UP 11 Link Up State
LINK_FLOW_CONTROL_INIT 12 Link Flow Control Initialization State
LINK_READY 13 Link Ready State

[Sample Code]

link_state argument only

Wait until Link is ready
pcie.link_event_wait(LINK_READY)

link_state and timeout_clks arguments

Wait until Link is ready or 10000 command clocks
pcie.link_event_wait(LINK_READY, 10000)

All arguments

Link Monitor Function
def link_monitor(time, link_state):

if (link_state == LINK_CONFIG_COMPLETE):
sim.imsg("PCIe Link Config Complete")

elif (link_state == LINK_UP):
sim.imsg("PCIe Link Up")

elif (link_state == LINK_READY):
sim.imsg("PCIe Link Ready")

Wait until Link is ready forever and monitor link state transition
pcie.link_event_wait(LINK_READY, -1, link_monitor)

90 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

The link_event_wait() is a command which waits until the PCI Express link status transits to the specified link
state. When it detects the specified link state, it exits from the waiting state and terminates.

If the link_event_wait() command has not detected the specified link state yet after passing of command clocks
by the timeout_clks argument, it terminates and DrivExpress goes to next command. If the timeout_clks argument is
omitted or set by negative number, it waits for the link state forever.

For the link_monitor argument, the link monitor function, which has two arguments, is specified. Whenever new
link state transition happens during waiting for the transition to the specified link state, the link_event_wait()
command calls this function. When it is called, the following two arguments are passed so that users can monitor the
link state transition in it.

Argument Name The contents which has been set when called
time Simulation time of transition to new link state
link_state New link state (pre-defined macro)

See Also:

Waits until PCI Express Link is ready

5.1. PCI Express Root Complex class 91

DrivExpress DPI Library, Version 1.0

5.1.2 Configuration space 8-bit read command

cfg_read8(address<, exp_data, mask_data>)

[Required Argument]

address 12-bit PCI configuration space address

[Optional Argument]

exp_data 8-bit expected data which will be compared to actual read data
mask_data 8-bit mask data which will be applied for an expected data and actual read data

[Sample Code]

address argument only

Read 8-bit data from configuration space address 0x50
pcie.cfg_read8(0x50)

address and exp_data arguments

Check whether 8-bit read data from 0x50 is equal to 0x05
pcie.cfg_read8(0x50, 0x05)

All arguments

Check whether lower 4-bit of 8-bit read data from 0x50 is equal to 0x5
("Actual read data & 0x0F" must be equal to "0x05 & 0x0F")
pcie.cfg_read8(0x50, 0x05, 0x0F)

The cfg_read8() is a command which reads 8-bit data from PCI configuration space. When the argument exp_data
is specified, the comparison with actual read data is done and error log is printed out if it is different. To check only a
part of 8-bit data, the argument mask_data, which checking bit position is set, is specified.

Note: Some pre-defined macros are prepared for the arguments of this command. It is recommended to use those
macros for clarity and readability.

See Also:

1. Configuration Space Register Address Definition Macro

2. Configuration Space Register Data Definition Macro

92 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.3 Configuration space 16-bit read command

cfg_read16(address<, exp_data, mask_data>)

[Required Argument]

address 12-bit PCI configuration space address

[Optional Argument]

exp_data 16-bit expected data which will be compared to actual read data
mask_data 16-bit mask data which will be applied for an expected data and actual read data

[Sample Code]

address argument only

Read 16-bit data from configuration space address 0x02
pcie.cfg_read16(0x02)

address and exp_data arguments

Check whether 16-bit read data from 0x02 is equal to 0x0004
pcie.cfg_read16(0x02, 0x0004)

All arguments

Check whether lower 8-bit of 16-bit read data from 0x02 is equal to 0x04
("Actual read data & 0x00FF" must be equal to "0x0004 & 0x00FF")
pcie.cfg_read16(0x02, 0x0004, 0x00FF)

The cfg_read16() is a command which reads 16-bit data from PCI configuration space. When the argument
exp_data is specified, the comparison with actual read data is done and error log is printed out if it is different. To
check only a part of 16-bit data, the argument mask_data, which checking bit position is set, is specified.

Note:

1. The address argument should be aligned to 2 bytes boundary. (bit[0] is zero)

2. Some pre-defined macros are prepared for the arguments of this command. It is recommended to use those
macros for clarity and readability.

See Also:

1. Configuration Space Register Address Definition Macro

2. Configuration Space Register Data Definition Macro

5.1. PCI Express Root Complex class 93

DrivExpress DPI Library, Version 1.0

5.1.4 Configuration space 32-bit read command

cfg_read32(address<, exp_data, mask_data>)

[Required Argument]

address 12-bit PCI configuration space address

[Optional Argument]

exp_data 32-bit expected data which will be compared to actual read data
mask_data 32-bit mask data which will be applied for an expected data and actual read data

[Sample Code]

address argument only

Read 32-bit data from configuration space address 0x10
pcie.cfg_read32(0x10)

address and exp_data arguments

Check whether 32-bit read data from 0x10 is equal to 0xFFC00000
pcie.cfg_read32(0x10, 0xFFC00000)

All arguments

Check whether upper 16-bit of 32-bit read data from 0x10 is equal to 0xFFC0
("Actual read data & 0xFFFF0000" must be equal to "0xFFC00000 & 0xFFFF0000")
pcie.cfg_read32(0x10, 0xFFC00000, 0xFFFF0000)

The cfg_read16() is a command which reads 32-bit data from PCI configuration space. When the argument
exp_data is specified, the comparison with actual read data is done and error log is printed out if it is different. To
check only a part of 32-bit data, the argument mask_data, which checking bit position is set, is specified.

Note:

1. The address argument should be aligned to 4 bytes boundary. (bit[1:0] is zero)

2. Some pre-defined macros are prepared for the arguments of this command. It is recommended to use those
macros for clarity and readability.

See Also:

1. Configuration Space Register Address Definition Macro

2. Configuration Space Register Data Definition Macro

94 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.5 Configuration space 8-bit write command

cfg_write8(address, data)

[Required Argument]

address 12-bit PCI configuration space address
data 8-bit write data

[Sample Code]

Write 8-bit data 0x46 to configuration space address 0x04
pcie.cfg_write8(0x04, 0x46)

The cfg_write8() is a command which writes 8-bit data to PCI configuration space.

Note: Some pre-defined macros are prepared for the arguments of this command. It is recommended to use those
macros for clarity and readability.

See Also:

1. Configuration Space Register Address Definition Macro

2. Configuration Space Register Data Definition Macro

5.1. PCI Express Root Complex class 95

DrivExpress DPI Library, Version 1.0

5.1.6 Configuration space 16-bit write command

cfg_write16(address, data)

[Required Argument]

address 12-bit PCI configuration space address
data 16-bit write data

[Sample Code]

Write 16-bit data 0x0146 to configuration space address 0x04
pcie.cfg_write16(0x04, 0x0146)

The cfg_write16() is a command which writes 16-bit data to PCI configuration space.

Note:

1. The address argument should be aligned to 2 bytes boundary. (bit[0] is zero)

2. Some pre-defined macros are prepared for the arguments of this command. It is recommended to use those
macros for clarity and readability.

See Also:

1. Configuration Space Register Address Definition Macro

2. Configuration Space Register Data Definition Macro

96 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.7 Configuration space 32-bit write command

cfg_write32(address, data)

[Required Argument]

address 12-bit PCI configuration space address
data 32-bit write data

[Sample Code]

Write 32-bit data 0x20000000 to configuration space address 0x10
pcie.cfg_write32(0x10, 0x20000000)

The cfg_write32() is a command which writes 32-bit data to PCI configuration space.

Note:

1. The address argument should be aligned to 4 bytes boundary. (bit[1:0] is zero)

2. Some pre-defined macros are prepared for the arguments of this command. It is recommended to use those
macros for clarity and readability.

See Also:

1. Configuration Space Register Address Definition Macro

2. Configuration Space Register Data Definition Macro

5.1. PCI Express Root Complex class 97

DrivExpress DPI Library, Version 1.0

5.1.8 Memory space 8-bit read command

mem_read8(address<, exp_data, mask_data>)

[Required Argument]

address 32-bit or 64-bit PCI memory space address

[Optional Argument]

exp_data 8-bit expected data which will be compared to actual read data
mask_data 8-bit mask data which will be applied for an expected data and actual read data

[Sample Code]

address argument only

Read 8-bit data from memory space address 0x50
pcie.mem_read8(0x50)

address and exp_data arguments

Check whether 8-bit read data from 0x50 is equal to 0x05
pcie.mem_read8(0x50, 0x05)

All arguments

Check whether lower 4-bit of 8-bit read data from 0x50 is equal to 0x5
("Actual read data & 0x0F" must be equal to "0x05 & 0x0F")
pcie.mem_read8(0x50, 0x05, 0x0F)

The mem_read8() is a command which reads 8-bit data from PCI memory space. When the argument exp_data is
specified, the comparison with actual read data is done and error log is printed out if it is different. To check only a
part of 8-bit data, the argument mask_data, which checking bit position is set, is specified.

Note: The address argument becomes 64-bit width when the is_64bit_address is True and 32-bit width when
it is Flase. If the bigger value than 32-bit width is specified as the argument when the is_64bit_address is
False, lower 32-bit is only valid and the higher part is cut off.

See Also:

64-bit memory address enabling parameter

98 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.9 Memory space 16-bit read command

mem_read16(address<, exp_data, mask_data>)

[Required Argument]

address 32-bit or 64-bit PCI memory space address

[Optional Argument]

exp_data 16-bit expected data which will be compared to actual read data
mask_data 16-bit mask data which will be applied for an expected data and actual read data

[Sample Code]

address argument only

Read 16-bit data from memory space address 0x02
pcie.mem_read16(0x02)

address and exp_data arguments

Check whether 16-bit read data from 0x02 is equal to 0x0004
pcie.mem_read16(0x02, 0x0004)

All arguments

Check whether lower 8-bit of 16-bit read data from 0x02 is equal to 0x04
("Actual read data & 0x00FF" must be equal to "0x0004 & 0x00FF")
pcie.mem_read16(0x02, 0x0004, 0x00FF)

The mem_read16() is a command which reads 16-bit data from PCI memory space. When the argument exp_data
is specified, the comparison with actual read data is done and error log is printed out if it is different. To check only a
part of 16-bit data, the argument mask_data, which checking bit position is set, is specified.

Note:

1. The address argument should be aligned to 2 bytes boundary. (bit[0] is zero)

2. The address argument becomes 64-bit width when the is_64bit_address is True and 32-bit width when
it is Flase. If the bigger value than 32-bit width is specified as the argument when the is_64bit_address
is False, lower 32-bit is only valid and the higher part is cut off.

See Also:

64-bit memory address enabling parameter

5.1. PCI Express Root Complex class 99

DrivExpress DPI Library, Version 1.0

5.1.10 Memory space 32-bit read command

mem_read32(address<, exp_data, mask_data>)

[Required Argument]

address 32-bit or 64-bit PCI memory space address

[Optional Argument]

exp_data 32-bit expected data which will be compared to actual read data
mask_data 32-bit mask data which will be applied for an expected data and actual read data

[Sample Code]

address argument only

Read 32-bit data from memory space address 0x10
pcie.mem_read32(0x10)

address and exp_data arguments

Check whether 32-bit read data from 0x10 is equal to 0xFFC00000
pcie.mem_read32(0x10, 0xFFC00000)

All arguments

Check whether upper 16-bit of 32-bit read data from 0x10 is equal to 0xFFC0
("Actual read data & 0xFFFF0000" must be equal to "0xFFC00000 & 0xFFFF0000")
pcie.mem_read32(0x10, 0xFFC00000, 0xFFFF0000)

The mem_read32() is a command which reads 32-bit data from PCI memory space. When the argument exp_data
is specified, the comparison with actual read data is done and error log is printed out if it is different. To check only a
part of 32-bit data, the argument mask_data, which checking bit position is set, is specified.

Note:

1. The address argument should be aligned to 4 bytes boundary. (bit[1:0] is zero)

2. The address argument becomes 64-bit width when the is_64bit_address is True and 32-bit width when
it is Flase. If the bigger value than 32-bit width is specified as the argument when the is_64bit_address
is False, lower 32-bit is only valid and the higher part is cut off.

See Also:

64-bit memory address enabling parameter

100 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.11 Memory space read command

mem_read(address, size<, exp_buf, mask_buf>)

[Required Argument]

address 32-bit or 64-bit PCI memory space address
size Read byte size

[Optional Argument]

exp_buf 8-bit expected data array which will be compared to actual read data
mask_buf 8-bit mask data array which will be applied for an expected data array and actual read data

[Sample Code]

address argument only

Read 6 bytes from memory space address 0x50
pcie.mem_read8(0x50, 6)

address and exp_data arguments

exp_buf = [0xFF, 0xEE, 0xDD, 0xCC, 0xBB, 0xAA] # 6 bytes expected data list
Check whether each 8-bit read data from 0x50 to 0x55
is equal to each element of exp_buf
pcie.mem_read(0x50, 6, exp_buf)

All arguments

exp_buf = [0x01, 0x02, 0x03, 0x04, 0x05, 0x06] # 6 bytes expected data list
mask_buf = [0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F] # 6 bytes mask data list
Check whether lower 4-bit of each 8-bit read data from 0x50 to 0x55
is equal to lower 4-bit of each element of exp_buf
pcie.mem_read(0x50, 6, exp_buf, mask_buf)

The mem_read() is a command which reads any byte length data from PCI memory space.

When the argument exp_data is specified, the comparison with actual read data is done and error log is printed out if
it is different. For the argument exp_buf, 8-bit data array (list or tuple, etc) should be specified. For example, in the
case of the sample code “address and exp_data arguments”, the following comparison will be done.

The case of the sample code “address and exp_data arguments”:

Comparison of exp_buf[0] and 8-bit read data from address 0x50
Comparison of exp_buf[1] and 8-bit read data from address 0x51

:
Comparison of exp_buf[5] and 8-bit read data from address 0x55

To check only a part of each 8-bit data which is read from each address, the argument mask_data is specified. This
argument should be 8-bit data array (list or tuple, etc) which checking bit position is set for each 8-bit data. For
example, in the case of the sample code “All arguments”, the following comparison will be done.

5.1. PCI Express Root Complex class 101

DrivExpress DPI Library, Version 1.0

The case of the sample code “All arguments”:

Comparison of exp_buf[0] and 8-bit read data from address 0x50 which are both processed logical AND by
mask_buf[0]
Comparison of exp_buf[1] and 8-bit read data from address 0x51 which are both processed logical AND by
mask_buf[1]

:
Comparison of exp_buf[5] and 8-bit read data from address 0x55 which are both processed logical AND by
mask_buf[5]

Note: The address argument becomes 64-bit width when the is_64bit_address is True and 32-bit width when
it is Flase. If the bigger value than 32-bit width is specified as the argument when the is_64bit_address is
False, lower 32-bit is only valid and the higher part is cut off.

See Also:

64-bit memory address enabling parameter

102 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.12 Memory space 8-bit write command

mem_write8(address, data)

[Required Argument]

address 32-bit or 64-bit PCI memory space address
data 8-bit write data

[Sample Code]

Write 8-bit data 0x46 to memory space address 0x04
pcie.mem_write8(0x04, 0x46)

The mem_write8() is a command which writes 8-bit data to PCI memory space.

Note: The address argument becomes 64-bit width when the is_64bit_address is True and 32-bit width when
it is Flase. If the bigger value than 32-bit width is specified as the argument when the is_64bit_address is
False, lower 32-bit is only valid and the higher part is cut off.

See Also:

64-bit memory address enabling parameter

5.1. PCI Express Root Complex class 103

DrivExpress DPI Library, Version 1.0

5.1.13 Memory space 16-bit write command

mem_write16(address, data)

[Required Argument]

address 32-bit or 64-bit PCI memory space address
data 16-bit write data

[Sample Code]

Write 16-bit data 0x0146 to memory space address 0x04
pcie.mem_write16(0x04, 0x0146)

The mem_write16() is a command which writes 16-bit data to PCI memory space.

Note:

1. The address argument should be aligned to 2 bytes boundary. (bit[0] is zero)

2. The address argument becomes 64-bit width when the is_64bit_address is True and 32-bit width when
it is Flase. If the bigger value than 32-bit width is specified as the argument when the is_64bit_address
is False, lower 32-bit is only valid and the higher part is cut off.

See Also:

64-bit memory address enabling parameter

104 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.14 Memory space 32-bit write command

mem_write32(address, data)

[Required Argument]

address 32-bit or 64-bit PCI memory space address
data 32-bit write data

[Sample Code]

Write 32-bit data 0x01234567 to memory space address 0x04
pcie.mem_write32(0x04, 0x01234567)

The mem_write32() is a command which writes 32-bit data to PCI memory space.

Note:

1. The address argument should be aligned to 4 bytes boundary. (bit[1:0] is zero)

2. The address argument becomes 64-bit width when the is_64bit_address is True and 32-bit width when
it is Flase. If the bigger value than 32-bit width is specified as the argument when the is_64bit_address
is False, lower 32-bit is only valid and the higher part is cut off.

See Also:

64-bit memory address enabling parameter

5.1. PCI Express Root Complex class 105

DrivExpress DPI Library, Version 1.0

5.1.15 Memory space write command

mem_write(address, size, data_buf)

[Required Argument]

address 32-bit or 64-bit PCI memory space address
size Write byte size
data_buf 8-bit write data array

[Sample Code]

data_buf = [0x00, 0x01, 0x02, 0x03, 0x04, 0x05] # 6 bytes write data list
Write 6 bytes increment data to memory space address 0x100
pcie.mem_write(0x100, 6, data_buf)

The mem_write() is a command which writes any byte length data to PCI memory space. For the argument
data_buf, 8-bit data array (list or tuple, etc) should be specified.

Note: The address argument becomes 64-bit width when the is_64bit_address is True and 32-bit width when
it is Flase. If the bigger value than 32-bit width is specified as the argument when the is_64bit_address is
False, lower 32-bit is only valid and the higher part is cut off.

See Also:

64-bit memory address enabling parameter

106 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.16 Completion packet wait command

completion_wait(<timeout_clks>)

[Optional Argument]

timeout_clks Time-out clock count (command clock basis)

[Sample Code]

No argumnet

pcie.mem_read32(0x10, 0x00112233)
pcie.mem_read32(0x14, 0x44556677)

Wait for completions for 2 mem_read32() commands
pcie.completion_wait()

This command starts after receiving all completion TLPs
for non-posted TLPs issued before
pcie.mem_read32(0x18, 0x8899AABB)

timeout_clks argument

pcie.mem_read32(0x10, 0x00112233)
pcie.mem_read32(0x14, 0x44556677)

Wait for completions for 2 mem_read32() commands or 10000 command clocks
pcie.completion_wait(10000)

This command starts after receiving all completion TLPs
for non-posted TLPs issued before or after 10000 command clocks timetout
pcie.mem_read32(0x18, 0x8899AABB)

The wait_completion() is a command which waits until all completion TLPs are returned from Endpoint device
for non-posted type commands which have already issued to Endpoint device. When receiving all completion TLPs,
it exits from the waiting state and terminates.

If the wait_completion() has not received all the completion TLPs yet after passing of command clocks by the
timeout_clks argument, it terminates and DrivExpress goes to next command. If the timeout_clks argument is omitted,
the wait_completion() command is effective until another time-out by nptlp_timeout_clks parameter
happens for all uncompleted non-posted type TLPs.

Tip: Only queue-type command is blocked by wait_completion() command. Because icommand or parameter
setting are executed instantly without queueing, those are not blocked.

See Also:

1. Issues next command after receiving completion packet -Part 1-

2. Non-Posted Request FIFO

3. Non-posted TLP request time-out parameter

5.1. PCI Express Root Complex class 107

DrivExpress DPI Library, Version 1.0

5.1.17 64-bit memory address enabling parameter

is_64bit_address

[Setting Value]

True 64-bit memory address is valid (32-bit memory address is invalid)
False 64-bit memory address is invalid (32-bit memory address is valid)

[Default Value]

False 64-bit memory address is invalid (32-bit memory address is valid)

[Sample Code]

64-bit Memory TLP Setting

pcie.is_64bit_address = True

32-bit Memory TLP Setting

pcie.is_64bit_address = False

When the is_64bit_address parameter is True, all memory space access commands like mem_read() or
mem_write() issue memory TLP with 64-bit address to Endpoint device. When it is False, the memory TLP has
32-bit address.

Tip:

1. As a similar parameter, the is_32bit_address parameter is prepared. Because is_32bit_address
and is_64bit_address parameters are exclusive each other, the other is Flase whenever one is True.

2. This parameter is only effective for the memory TLP which DrivExpress issues to Endpoint device. DrivExpress
can always handle the memory TLP from Endpoint device without special setting.

See Also:

Issues memory read/write TLP with 64-bit address

108 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.18 Gen2 enabling parameter

is_speed_change

[Setting Value]

True Enables Gen2 speed change negotiation in the link training sequence
False Disables Gen2 speed change negotiation in the link training sequence

[Default Value]

True Enables Gen2 speed change negotiation in the link training sequence

[Sample Code]

Enable Gen2 speed change

pcie.is_speed_change = True

Disable Gen2 speed change

pcie.is_speed_change = False

When the is_speed_change is True, Gen2(5.0Gbps) speed change negotiation is done in the link training se-
quence. When it is False, no negotiation is done and the speed is Gen1(2.5Gbps).

5.1. PCI Express Root Complex class 109

DrivExpress DPI Library, Version 1.0

5.1.19 End-to-end CRC enabling parameter

is_ecrc

[Setting Value]

True ECRC is added to TLP
False ECRC is not added to TLP

[Default Value]

False ECRC is not added to TLP

[Sample Code]

Enable ECRC

pcie.is_ecrc = True

Disable ECRC

pcie.is_ecrc = False

When the is_ecec parameter is True, ECRC is added to all TLPs issued by DrivExpress as TLP digest. When it is
False, ECRC is not added.

See Also:

Adds CRC in Transaction Layer

110 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.20 Read Completion Boundary enabling parameter

is_rcb_multi_completions

[Setting Value]

True Completion packet is split by RCB address
False Completion packet is not split by RCB address

[Default Value]

True Completion packet is split by RCB address

[Sample Code]

Enable split by RCB address for completion packet

pcie.is_rcb_multi_completions = True

Disable split by RCB address for completion packet

pcie.is_rcb_multi_completions = False

When is_rcb_multi_completions parameter is True, DrivExpress returns multiple completion TLPs split by
RCB address if memory read request from Endpoint device is beyond RCB address. When it is False, the completion
packet is split by not RCB address but max payload size.

See Also:

1. Sets Read Completion Boundary to 128 bytes

2. Transmits completion TLP including max payload size data

5.1. PCI Express Root Complex class 111

DrivExpress DPI Library, Version 1.0

5.1.21 128 bytes Read Completion Boundary enabling parameter

is_rcb_128byte

[Setting Value]

True Set RCB of completion TLP to 128 bytes boundary address
False Set RCB of completion TLP to 64 bytes boundary address

[Default Value]

False Set RCB of completion TLP to 64 bytes boundary address

[Sample Code]

Enable 128 byte RCB

pcie.is_rcb_128byte = True

Enable 64 byte RCB

pcie.is_rcb_128byte = False

When the is_rcb_128byte parameter is True, DrivExpress returns multiple completion TLPs split by 128 bytes
address if memory read request from Endpoint device is beyond 128 bytes address. When it is False, multiple
completion TLPs split by 64 bytes address are sent to Endpoint device if memory read request from Endpoint device
is beyond 64 bytes address.

The is_rcb_128byte parameter is effective only when the is_rcb_multi_completions parameter is
True. When the is_rcb_multi_completions parameter is False, it makes no sense to set this parameter.

Tip: As a similar parameter, the is_rcb_64byte parameter is prepared. Because is_rcb_128byte and
is_rcb_64byte parameters are exclusive each other, the other is Flase whenever one is True.

See Also:

1. Sets Read Completion Boundary to 128 bytes

2. Transmits completion TLP including max payload size data

3. Read Completion Boundary enabling parameter

112 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.22 Extended tag field enabling parameter

is_extended_tag

[Setting Value]

True Tag field is set to 8-bit width
False Tag field is set to 5-bit width

[Default Value]

False Tag field is set to 5-bit width

[Sample Code]

8-bit Tag field Setting

pcie.is_extended_tag = True

5-bit Tag field Setting

pcie.is_extended_tag = False

When the is_extended_tag parameter is True, the tag field of TLP is extended to 8-bit and the total count of
non-posted TLP, which can be issued to Endpoint device in advance, is up to 256. When it is False, the tag field is
5-bit and the non-posted TLP count is 32.

See Also:

1. Expands tag field to 8-bit

2. Relationship between Memory Read TLP and Tag Field

5.1. PCI Express Root Complex class 113

DrivExpress DPI Library, Version 1.0

5.1.23 4KB boundary check enabling parameter

is_4kb_boundary_check

[Setting Value]

True Memory TLP is checked whether it is beyond 4KB boundary address
False Memory TLP is not checked whether it is beyond 4KB boundary address

[Default Value]

True Memory TLP is checked whether it is beyond 4KB boundary address

[Sample Code]

Enable 4KB boundary check for Ingress Memory TLP

pcie.is_4kb_boundary_check = True

Disable 4KB boundary check for Ingress Memory TLP

pcie.is_4kb_boundary_check = False

When the is_4kb_boundary_check is True, error log is printed out if the memory TLP sent from Endpoint
device is beyond 4KB address boundary. When it is False, no error log is printed out for such a TLP.

114 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.24 Completion packet wait parameter

is_completion_wait

[Setting Value]

True All non-posted type commands wait for the corresponding completion TLP(s) being returned
False All non-posted type commands do not wait for the corresponding completion TLP(s) being re-

turned

[Default Value]

False All non-posted type commands do not wait for the corresponding completion TLP(s) being re-
turned

[Sample Code]

Wait until receiving all completion TLPs for non-posted type command

pcie.is_completion_wait = True

Go to next command without waiting for a completion TLP

pcie.is_completion_wait = False

When the is_completion_wait is True, all non-posted type commands of Root Complex class wait until the
corresponding completion TLP(s) are returned from Endpoint device. When it is False, all non-posted type com-
mands of Root Complex class exit after sending the TLP to Endpoint device without waiting for the completion
TLP(s).

See Also:

Issues next command after receiving completion packet -Part 2-

5.1. PCI Express Root Complex class 115

DrivExpress DPI Library, Version 1.0

5.1.25 Memory write command synchronization parameter

is_mem_write_sync

[Setting Value]

True Memory write command does not overtake the non-posted type command which is waiting for tag
number to be available

False Memory write command overtakes the non-posted type command which is waiting for tag number
to be available

[Default Value]

True Memory write command does not overtake the non-posted type command which is waiting for tag
number to be available

[Sample Code]

Memory write TLP don’t pass non-posted TLP which is waiting for available tag

pcie.is_mem_write_sync = True

Memory write TLP can pass non-posted TLP which is waiting for available tag

pcie.is_mem_write_sync = False

When the is_mem_write_sync parameter is True, the following memory write command (posted type command)
is not executed under the situation that the preceding issued non-posted type command is waiting for an open tag
number. In other words, it is not until all non-posted TLPs for the preceding issued command are issued to Endpoint
device that the memory write TLP for the following memory write command is issued to Endpoint device.

When it is False, the following memory write command is executed under the situation that the preceding issued
non-posted type command is waiting for an open tag number. This means the following memory write command
overtakes the previous non-posted type command.

See Also:

Passing Memory Write Command

116 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.26 Ingress DLLP raw data print enabling parameter

is_watch_ingress_dllp

[Setting Value]

True Ingress DLLP is printed out as raw data
False Ingress DLLP is not printed out

[Default Value]

False Ingress DLLP is not printed out

[Sample Code]

Ingress DLLP is displayed

pcie.is_watch_ingress_dllp = True

Ingress DLLP is not displayed

pcie.is_watch_ingress_dllp = False

When the is_watch_ingress_dllp parameter is True, the ingress DLLP from Endpoint device is printed out
to console (standard output) as raw data. When it is False, the received DLLP is not printed out.

See Also:

Controls DrivExpress log output

5.1. PCI Express Root Complex class 117

DrivExpress DPI Library, Version 1.0

5.1.27 Ingress TLP raw data print enabling parameter

is_watch_ingress_tlp

[Setting Value]

True Ingress TLP is printed out as raw data
False Ingress TLP is not printed out

[Default Value]

False Ingress TLP is not printed out

[Sample Code]

Ingress TLP is displayed as RAW data

pcie.is_watch_ingress_tlp = True

Ingress TLP is not displayed as RAW data

pcie.is_watch_ingress_tlp = False

When the is_watch_ingress_tlp parameter is True, the ingress TLP from Endpoint device is printed out to
console (standard output) as raw data. When it is False, the ingress TLP is not printed out.

See Also:

Controls DrivExpress log output

118 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.28 Egress DLLP raw data print enabling parameter

is_watch_egress_dllp

[Setting Value]

True Egress DLLP is printed out as raw data
False Egress DLLP is not printed out

[Default Value]

False Egress DLLP is not printed out

[Sample Code]

Egress DLLP is displayed as RAW data

pcie.is_watch_egress_dllp = True

Egress DLLP is not displayed as RAW data

pcie.is_watch_egress_dllp = False

When the is_watch_egress_dllp parameter is True, the egress DLLP to Endpoint device is printed out to
console (standard output) as raw data. When it is False, the egress DLLP is not printed out.

See Also:

Controls DrivExpress log output

5.1. PCI Express Root Complex class 119

DrivExpress DPI Library, Version 1.0

5.1.29 Egress TLP raw data print enabling parameter

is_watch_egress_tlp

[Setting Value]

True Egress TLP is printed out as raw data
False Egress TLP is not printed out

[Default Value]

False Egress TLP is not printed out

[Sample Code]

Egress TLP is displayed as RAW data

pcie.is_watch_egress_tlp = True

Egress TLP is not displayed as RAW data

pcie.is_watch_egress_tlp = False

When the is_watch_egress_tlp parameter is True, the egress TLP to Endpoint device is printed out to console
(standard output) as raw data. When it is False, the egress TLP is not printed out.

See Also:

Controls DrivExpress log output

120 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.30 Framer/Striper behavior print enabling parameter

is_watch_framer_striper

[Setting Value]

True Behavior of internal Framer/Striper is printed out
False Behavior of internal Framer/Striper is not printed out

[Default Value]

False Behavior of internal Framer/Striper is not printed out

[Sample Code]

Framer/Striper is displayed

pcie.is_watch_framer_striper = True

Framer/Striper is not displayed

pcie.is_watch_framer_striper = False

When the is_watch_framer_striper parameter is True, the behavior of internal Framer/Striper is printed out
to console (standard output). When it is False, the behavior not printed out.

See Also:

Controls DrivExpress log output

5.1. PCI Express Root Complex class 121

DrivExpress DPI Library, Version 1.0

5.1.31 De-Striper/De-Framer behavior print enabling parameter

is_watch_destriper_deframer

[Setting Value]

True Behavior of internal De-Striper/De-Framer is printed out
False Behavior of internal De-Striper/De-Framer is not printed out

[Default Value]

False Behavior of internal De-Striper/De-Framer is not printed out

[Sample Code]

De-Striper/De-Framer is displayed

pcie.is_watch_destriper_deframer = True

De-Striper/De-Framer is not displayed

pcie.is_watch_destriper_deframer = False

When the is_watch_destriper_deframer parameter is True, the behavior of internal De-Striper/De-Framer
is printed out to console (standard output). When it is False, the behavior is not printed out.

See Also:

Controls DrivExpress log output

122 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.32 LTSSM report enabling parameter

is_report_ltssm

[Setting Value]

True Report of link training sequence is printed out
False Report of link training sequence is not printed out

[Default Value]

True Report of link training sequence is printed out

[Sample Code]

Link Training Sequence is reported

pcie.is_report_ltssm = True

Link Training Sequence is not reported

pcie.is_report_ltssm = False

When the is_report_ltssm parameter is True, the analysis report of link training sequence is printed out to
console (standard output). When it is False, the analysis report is not printed out.

See Also:

Controls DrivExpress log output

5.1. PCI Express Root Complex class 123

DrivExpress DPI Library, Version 1.0

5.1.33 InitFC report enabling parameter

is_report_init_fc

[Setting Value]

True Report of flow control initialization is printed out
False Report of flow control initialization is not printed out

[Default Value]

True Report of flow control initialization is printed out

[Sample Code]

Flow Control Initialization is reported

pcie.is_report_init_fc = True

Flow Control Initialization is not reported

pcie.is_report_init_fc = False

When the is_report_init_fc parameter is True, the analysis report of flow control initialization is printed out
to console (standard output). When it is False, the analysis report is not printed out.

See Also:

Controls DrivExpress log output

124 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.34 Configuration read TLP report enabling parameter

is_report_cfg_read_tlp

[Setting Value]

True Report of configuration read TLP is printed out
False Report of configuration read TLP is not printed out

[Default Value]

True Report of configuration read TLP is printed out

[Sample Code]

Configration read TLP is reported

pcie.is_report_cfg_read_tlp = True

Configration read TLP is not reported

pcie.is_report_cfg_read_tlp = False

When the is_report_cfg_read_tlp parameter is True, the analysis report of configuration read TLP is printed
out to console (standard output). When it is False, the analysis report is not printed out.

See Also:

Controls DrivExpress log output

5.1. PCI Express Root Complex class 125

DrivExpress DPI Library, Version 1.0

5.1.35 Configuration write TLP report enabling parameter

is_report_cfg_write_tlp

[Setting Value]

True Report of configuration write TLP is printed out
False Report of configuration write TLP is not printed out

[Default Value]

True Report of configuration write TLP is printed out

[Sample Code]

Configration write TLP is reported

pcie.is_report_cfg_write_tlp = True

Configration write TLP is not reported

pcie.is_report_cfg_write_tlp = False

When the is_report_cfg_write_tlp parameter is True, the analysis report of configuration write TLP is
printed out to console (standard output). When it is False, the analysis report is not printed out.

See Also:

Controls DrivExpress log output

126 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.36 Memory read TLP report enabling parameter

is_report_mem_read_tlp

[Setting Value]

True Report of memory read TLP is printed out
False Report of memory read TLP is not printed out

[Default Value]

True Report of memory read TLP is printed out

[Sample Code]

Memory read TLP is reported

pcie.is_report_mem_read_tlp = True

Memory read TLP is not reported

pcie.is_report_mem_read_tlp = False

When the is_report_mem_read_tlp parameter is True, the analysis report of memory read TLP is printed out
to console (standard output). When it is False, the analysis report is not printed out.

See Also:

Controls DrivExpress log output

5.1. PCI Express Root Complex class 127

DrivExpress DPI Library, Version 1.0

5.1.37 Memory write TLP report enabling parameter

is_report_cfg_write_tlp

[Setting Value]

True Report of memory write TLP is printed out
False Report of memory write TLP is not printed out

[Default Value]

True Report of memory write TLP is printed out

[Sample Code]

Memory write TLP is reported

pcie.is_report_mem_write_tlp = True

Memory write TLP is not reported

pcie.is_report_mem_write_tlp = False

When the is_report_mem_write_tlp parameter is True, the analysis report of memory write TLP is printed
out to console (standard output). When it is False, the analysis report is not printed out.

See Also:

Controls DrivExpress log output

128 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.38 Completion with data TLP report enabling parameter

is_report_cpl_with_data_tlp

[Setting Value]

True Report of completion with data TLP is printed out
False Report of completion with data TLP is not printed out

[Default Value]

True Report of completion with data TLP is printed out

[Sample Code]

Completion with data TLP is reported

pcie.is_report_cpl_with_data_tlp = True

Completion with data TLP is not reported

pcie.is_report_cpl_with_data_tlp = False

When the is_report_cpl_with_data_tlp parameter is True, the analysis report of completion with data
TLP is printed out to console (standard output). When it is False, the analysis report is not printed out.

See Also:

Controls DrivExpress log output

5.1. PCI Express Root Complex class 129

DrivExpress DPI Library, Version 1.0

5.1.39 Completion without data TLP report enabling parameter

is_report_cpl_without_data_tlp

[Setting Value]

True Report of completion without data TLP is printed out
False Report of completion without data TLP is not printed out

[Default Value]

True Report of completion without data TLP is printed out

[Sample Code]

Completion without data TLP is reported

pcie.is_report_cpl_without_data_tlp = True

Completion without data TLP is not reported

pcie.is_report_cpl_without_data_tlp = False

When the is_report_cpl_without_data_tlp parameter is True, the analysis report of completion without
data TLP is printed out to console (standard output). When it is False, the analysis report is not printed out.

See Also:

Controls DrivExpress log output

130 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.40 Requester ID setting parameter

requester_id

[Setting Value]

0x0000 to 0xFFFF Requester ID (16-bit field)

[Default Value]

0x0000 Requester ID is 0

[Sample Code]

Use 0x55AA as Requester ID
pcie.requester_id = 0x55AA

The requester_id is a parameter which set requester ID. This ID value is embedded into the following field of the
TLPs issued by DrivExpress.

• Requester ID field of configuration TLP

• Requester ID field of memory TLP

• Completer ID field of completion TLP

See Also:

Changes requester ID

5.1. PCI Express Root Complex class 131

DrivExpress DPI Library, Version 1.0

5.1.41 Bus number setting parameter

bus_num

[Setting Value]

0 to 255 PCI Express bus number (8-bit field)

[Default Value]

1 PCI Express bus number is 1

[Sample Code]

Set 3 as PCI Express Bus Number
pcie.bus_num = 3

The bus_num is a parameter which sets PCI Express bus number. This bus number is notified to Endpoint device
when configuration write command is executed.

See Also:

Specifies Bus number, Device number, and Function number

132 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.42 Device number setting parameter

device_num

[Setting Value]

0 to 31 PCI Express device number (5-bit field)

[Default Value]

1 PCI Express device number is 1

[Sample Code]

Set 2 as PCI Express Device Number
pcie.device_num = 2

The device_num is a parameter which sets PCI Express device number. This device number is notified to Endpoint
device when configuration write command is executed.

See Also:

Specifies Bus number, Device number, and Function number

5.1. PCI Express Root Complex class 133

DrivExpress DPI Library, Version 1.0

5.1.43 Function number setting parameter

function_num

[Setting Value]

0 to 7 PCI Express function number (3-bit field)

[Default Value]

0 PCI Express function number is 0

[Sample Code]

Set 1 as PCI Express Function Number
pcie.function_num = 1

The function_num is a parameter which sets PCI Express function number. This function number is notified to
Endpoint device when configuration write command is executed.

See Also:

Specifies Bus number, Device number, and Function number

134 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.44 Max Payload Size setting parameter

max_payload_size

[Setting Value]

128 Max payload size is 128 bytes
256 Max payload size is 256 bytes
512 Max payload size is 512 bytes
1024 Max payload size is 1024 bytes
2048 Max payload size is 2048 bytes
4096 Max payload size is 4096 bytes

[Default Value]

128 Max payload size is 128 bytes

[Sample Code]

Change Max Payload Size of DrviExpress to 256 byte
pcie.max_payload_size = 256

The max_payload_size is a parameter which sets the max payload size of Root Complex. This value becomes
maximum payload size of memory TLP and completion TLP issued by DrivExpress.

See Also:

Changes max payload size of memory read/write TLP

5.1. PCI Express Root Complex class 135

DrivExpress DPI Library, Version 1.0

5.1.45 Egress TLP FIFO size setting parameter

max_fifo_count_egress_tlp

[Setting Value]

0 to 65535 Egress TLP FIFO size

[Default Value]

8192 Egress TLP FIFO can store up to 8192 Egress TLPs temporarily

[Sample Code]

Change Egress TLP FIFO size to 16384
pcie.max_fifo_count_egress_tlp = 16384

The max_fifo_count_egress_tlp is a parameter which sets the size (depth) of internal Egress TLP FIFO.

See Also:

Egress TLP FIFO

136 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.46 Ingress TLP FIFO size setting parameter

max_fifo_count_ingress_tlp

[Setting Value]

0 to 65535 Ingress TLP FIFO size

[Default Value]

8192 Ingress TLP FIFO can store up to 8192 Ingress TLPs temporarily

[Sample Code]

Change Ingress TLP FIFO size to 16384
pcie.max_fifo_count_ingress_tlp = 16384

The max_fifo_count_ingress_tlp is a parameter which sets the size (depth) of internal Ingress TLP FIFO.

See Also:

Ingress TLP FIFO

5.1. PCI Express Root Complex class 137

DrivExpress DPI Library, Version 1.0

5.1.47 Egress TLP FIFO pop timing delay parameter

proc_wait_clks_egress_tlp

[Setting Value]

0 to 4096 Delay clock count when retrieving TLP from Egress TLP FIFO (PIPE interface bus clock basis)

[Default Value]

0 No delay when retrieving TLP from Egress TLP FIFO

[Sample Code]

Put 256 PIPE interface clock delay before retrieving egress TLP
pcie.proc_wait_clks_egress_tlp = 256

The proc_wait_clks_egress_tlp is a parameter which sets the delay clock count when when retrieving TLP
from internal Egress TLP FIFO. The clock count value should be based on PIPE interface bus clock.

Tip: Users can also control the timing of TLP issuance on a command basis by using the cmd_interval_clks pa-
rameter of Simulation Control class. However, not that the cmd_interval_clks parameter controls the timing of
command execution, not the timing of TLP issuance. For example, one mem_read() or mem_write() command
may generate multiple TLPs, the issuance timing for those TLPs can not be controlled by cmd_interval_clks
parameter. For such a case, proc_wait_clks_egress_tlp parameter is used.

See Also:

1. Egress TLP FIFO

2. Command execution interval setting parameter

138 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.1.48 Ingress TLP FIFO pop timing delay parameter

proc_wait_clks_ingress_tlp

[Setting Value]

0 to 4096 Delay clock count when retrieving TLP from Ingress TLP FIFO (PIPE interface bus clock basis)

[Default Value]

0 No delay when retrieving TLP from Ingress TLP FIFO

[Sample Code]

Put 256 PIPE interface clock delay before retrieving ingress TLP
pcie.proc_wait_clks_ingress_tlp = 256

The proc_wait_clks_ingress_tlp is a parameter which sets the delay clock count when when retrieving TLP
from internal Ingress TLP FIFO. The clock count value should be based on PIPE interface bus clock.

Note: There is a possibility that this parameter causes the completion TLP(s) time-out for non-posted type command.
More precisely, it is the time-out for internal Non-Posted Request FIFO. Because the completion TLP is not retrieved
from the FIFO until passing the time of the clock count, TLP processing layer of DrivExpress can not check it for
the request of Non-Posted Request FIFO until then. Especially, it is certain that the time-out happens if the value of
this parameter is bigger than the value of the nptlp_timeout_clks parameter. Except for the special reason, it is
recommended to use the proc_wait_clks_egress_tlp parameter or the cmd_interval_clks parameter
for the purpose of the TLP timing control instead of this parameter.

See Also:

1. Ingress TLP FIFO

2. Non-Posted Request FIFO

3. Non-posted TLP request time-out parameter

4. Egress TLP FIFO pop timing delay parameter

5. Command execution interval setting parameter

5.1. PCI Express Root Complex class 139

DrivExpress DPI Library, Version 1.0

5.1.49 Non-posted TLP request time-out parameter

nptlp_timeout_clks

[Setting Value]

0 to 65535 Time-out clock count of the issued non-posted TLP (PIPE interface bus clock basis)

[Default Value]

65535 Time-out happens after the time of 65535 clocks

[Sample Code]

Set non-posted TLP timeout period to 8192 PIPE clocks
pcie.nptlp_timeout_clks = 8192

The nptlp_timeout_clks is a parameter which sets time-out value for the non-posted TLP issued to Endpoint
device. The clock count value should be based on PIPE interface bus clock.

The time-out happens and the request of Non-Posted Request FIFO is removed when the completion TLP has not been
returned from Endpoint device yet even though the time of the specified PIPE bus clock count has passed.

See Also:

Non-Posted Request FIFO

140 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.2 Host Memory class

HostMemory(start_address, end_address<, initial_value>)

[Required Argument]

start_address Start address of Host Memory instance (absolute address)
end_address End address of Host Memory instance (absolute address)

[Optional Argument]

initial_value Initial value of Host Memory instance (8-bit data)

[Returned Value]

Instance ID ID of Host Memory instance

[Sample Code]

start_address and end_address arguments

Create 64KB memory area 0 (Start Addr:0x00000000, End Addr:0x0000FFFF)
hmem0 = HostMemory(0x00000000, 0x0000FFFF)

All arguments

Create 64KB memory area 1 (Start Addr:0x00010000, End Addr:0x0001FFFF)
hmem1 = HostMemory(0x00010000, 0x0001FFFF, 0x55) # initialized by all 0x55 data

Users can name the variable, which stores instance ID, anything they want. More than one instance of Host Memory
class can be created unless the memory area does not overlap each other. When the argument initial_value is omitted,
the area is initialized by 0x00 data.

Host Memory class provides the following 3 main functions. Those are all command type. Host Memory class has no
parameter.

1. Read and write to memory area

2. Memory access detection from Endpoint device

3. Memory dump control

5.2. Host Memory class 141

DrivExpress DPI Library, Version 1.0

Table 5.2: Commands of Host Memory class

No Name Brief Description
1 read8() 8-bit read command
2 read16() 16-bit read command
3 read32() 32-bit read command
4 read() Read command
5 write8() 8-bit write command
6 write16() 16-bit write command
7 write32() 32-bit write command
8 write() Write command
9 iread8() Immediate 8-bit read command
10 iread16() Immediate 16-bit read command
11 iread32() Immediate 32-bit read command
12 iread() Immediate read command
13 iwrite8() Immediate 8-bit write command
14 iwrite16() Immediate 16-bit write command
15 iwrite32() Immediate 32-bit write command
16 iwrite() Immediate write command
17 event_wait() Memory access event wait command
18 event_callback() Memory access event callback command
19 enable_event() Event enabling command
20 disable_event() Event disabling command
21 dump() Memory dump command
22 read_file() Read memory file command
23 write_file() Write memory file command
24 idump() Immediate memory dump command
25 iread_file() Immediate read memory file command
26 iwrite_file() Immediate write memory file command

142 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.2.1 8-bit read command

read8(offset_address<, exp_data, mask_data>)

[Required Argument]

offset_address Offset address

[Optional Argument]

exp_data 8-bit expected data which will be compared to actual read data
mask_data 8-bit mask data which will be applied for an expected data and actual read data

[Sample Code]

offset_address argument only

Read 8-bit data from offset address 0x50
hmem.read8(0x50)

offset_address and exp_data arguments

Check whether 8-bit read data from offset address 0x50 is equal to 0x05
hmem.read8(0x50, 0x05)

All arguments

Check whether lower 4-bit of 8-bit read data from offset address 0x50
is equal to 0x5
("Actual read data & 0x0F" must be equal to "0x05 & 0x0F")
hmem.read8(0x50, 0x05, 0x0F)

The read8() is a command which reads 8-bit data from the relevant host memory model.

For the argument offset_address, offset address of the relevant host memory is specified. In the case of the above
sample code, the value of from 0x0000 to 0xFFFF can be specified as the offset address if hmem has been created
as the host memory model which area is 0x10000-0x1FFFF. Reading from offset address 0x50 of hmem is equal to
reading from absolute address 0x10050.

When the argument exp_data is specified, the comparison with actual read data is done and error log is printed out if it
is different. To check only a part of 8-bit data, the argument mask_data, which checking bit position is set, is specified.

Note: The read8() is a queue-type command. It is pushed into the command queue and executed in the Verilog
simulation process, so please note that this command consumes the Verilog simulation time.

See Also:

1. Simulation Cost

2. Immediate 8-bit read command

5.2. Host Memory class 143

DrivExpress DPI Library, Version 1.0

5.2.2 16-bit read command

read16(offset_address<, exp_data, mask_data>)

[Required Argument]

offset_address Offset address

[Optional Argument]

exp_data 16-bit expected data which will be compared to actual read data
mask_data 16-bit mask data which will be applied for an expected data and actual read data

[Sample Code]

offset_address argument only

Read 16-bit data from offset address 0x02
hmem.read16(0x02)

offset_address and exp_data arguments

Check whether 16-bit read data from offset address 0x02 is equal to 0x0004
hmem.read16(0x02, 0x0004)

All arguments

Check whether lower 8-bit of 16-bit read data from offset address 0x02
is equal to 0x04
("Actual read data & 0x00FF" must be equal to "0x0004 & 0x00FF")
hmem.read16(0x02, 0x0004, 0x00FF)

The read16() is a command which reads 16-bit data from the relevant host memory model.

For the argument offset_address, offset address of the relevant host memory is specified. In the case of the above
sample code, the value of from 0x0000 to 0xFFFE can be specified as the offset address if hmem has been created
as the host memory model which area is 0x10000-0x1FFFF. Reading from offset address 0x02 of hmem is equal to
reading from absolute address 0x10002.

When the argument exp_data is specified, the comparison with actual read data is done and error log is printed out
if it is different. To check only a part of 16-bit data, the argument mask_data, which checking bit position is set, is
specified.

Note:

1. The offset_address argument should be aligned to 2 bytes boundary. (bit[0] is zero)

2. The read16() is a queue-type command. It is pushed into the command queue and executed in the Verilog
simulation process, so please note that this command consumes the Verilog simulation time.

See Also:

1. Simulation Cost

2. Immediate 16-bit read command

144 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.2.3 32-bit read command

read32(offset_address<, exp_data, mask_data>)

[Required Argument]

offset_address Offset address

[Optional Argument]

exp_data 32-bit expected data which will be compared to actual read data
mask_data 32-bit mask data which will be applied for an expected data and actual read data

[Sample Code]

offset_address argument only

Read 32-bit data from offset address 0x10
hmem.read32(0x10)

offset_address and exp_data arguments

Check whether 32-bit read data from offset address 0x10 is equal to 0xFFC00000
hmem.read32(0x10, 0xFFC00000)

All arguments

Check whether upper 16-bit of 32-bit read data from offset address 0x10
is equal to 0xFFC0
("Actual read data & 0xFFFF0000" must be equal to "0xFFC00000 & 0xFFFF0000")
hmem.read32(0x10, 0xFFC00000, 0xFFFF0000)

The read32() is a command which reads 32-bit data from the relevant host memory model.

For the argument offset_address, offset address of the relevant host memory is specified. In the case of the above
sample code, the value of from 0x0000 to 0xFFFC can be specified as the offset address if hmem has been created
as the host memory model which area is 0x10000-0x1FFFF. Reading from offset address 0x10 of hmem is equal to
reading from absolute address 0x10010.

When the argument exp_data is specified, the comparison with actual read data is done and error log is printed out
if it is different. To check only a part of 32-bit data, the argument mask_data, which checking bit position is set, is
specified.

Note:

1. The offset_address argument should be aligned to 4 bytes boundary. (bit[1:0] is zero)

2. The read32() is a queue-type command. It is pushed into the command queue and executed in the Verilog
simulation process, so please note that this command consumes the Verilog simulation time.

See Also:

1. Simulation Cost

2. Immediate 32-bit read command

5.2. Host Memory class 145

DrivExpress DPI Library, Version 1.0

5.2.4 Read command

read(offset_address, size<, exp_buf, mask_buf>)

[Required Argument]

offset_address Offset address
size Read byte size

[Optional Argument]

exp_buf 8-bit expected data array which will be compared to actual read data
mask_buf 8-bit mask data array which will be applied for an expected data array and actual read data

[Sample Code]

offset_address argument only

Read 6 bytes from offset address 0x50
hmem.read(0x50, 6)

offset_address and exp_data arguments

exp_buf = [0xFF, 0xEE, 0xDD, 0xCC, 0xBB, 0xAA] # 6 bytes expected data list
Check whether each 8-bit read data from offset address 0x50
to offset address 0x55 is equal to each element of exp_buf
hmem.read(0x50, 6, exp_buf)

All arguments

exp_buf = [0x01, 0x02, 0x03, 0x04, 0x05, 0x06] # 6 bytes expected data list
mask_buf = [0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F] # 6 bytes mask data list
Check whether lower 4-bit of each 8-bit read data from offset address 0x50
to offset address 0x55 is equal to lower 4-bit of each element of exp_buf
hmem.read(0x50, 6, exp_buf, mask_buf)

The read() is a command which reads any byte length data from the relevant host memory model.

For the argument offset_address, offset address of the relevant host memory is specified. In the case of the above
sample code, the value of from 0x0000 to 0xFFFF can be specified as the offset address if hmem has been created
as the host memory model which area is 0x10000-0x1FFFF. Reading from offset address 0x50 of hmem is equal to
reading from absolute address 0x10050.

When the argument exp_data is specified, the comparison with actual read data is done and error log is printed out if
it is different. For the argument exp_buf, 8-bit data array (list or tuple, etc) should be specified. For example, in the
case of the sample code “address and exp_data arguments”, the following comparison will be done.

The case of the sample code “address and exp_data arguments”:

Comparison of exp_buf[0] and 8-bit read data from address 0x50
Comparison of exp_buf[1] and 8-bit read data from address 0x51

:
Comparison of exp_buf[5] and 8-bit read data from address 0x55

146 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

To check only a part of each 8-bit data which is read from each offset address, the argument mask_data is specified.
This argument should be 8-bit data array (list or tuple, etc) which checking bit position is set for each 8-bit data. For
example, in the case of the sample code “All arguments”, the following comparison will be done.

The case of the sample code “All arguments”:

Comparison of exp_buf[0] and 8-bit read data from address 0x50 which are both processed logical AND by
mask_buf[0]
Comparison of exp_buf[1] and 8-bit read data from address 0x51 which are both processed logical AND by
mask_buf[1]

:
Comparison of exp_buf[5] and 8-bit read data from address 0x55 which are both processed logical AND by
mask_buf[5]

Note: The read() is a queue-type command. It is pushed into the command queue and executed in the Verilog
simulation process, so please note that this command consumes the Verilog simulation time.

See Also:

1. Simulation Cost

2. Immediate read command

5.2. Host Memory class 147

DrivExpress DPI Library, Version 1.0

5.2.5 8-bit write command

write8(offset_address, data)

[Required Argument]

offset_address Offset address
data 8-bit write data

[Sample Code]

Write 8-bit data 0x46 to offset address 0x04
hmem.write8(0x04, 0x46)

The write8() is a command which writes 8-bit data to the relevant host memory model.

For the argument offset_address, offset address of the relevant host memory is specified. In the case of the above
sample code, the value of from 0x0000 to 0xFFFF can be specified as the offset address if hmem has been created as
the host memory model which area is 0x10000-0x1FFFF. Writing to offset address 0x04 of hmem is equal to writing
to absolute address 0x10004.

Note: The write8() is a queue-type command. It is pushed into the command queue and executed in the Verilog
simulation process, so please note that this command consumes the Verilog simulation time.

See Also:

1. Simulation Cost

2. Immediate 8-bit write command

148 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.2.6 16-bit write command

write16(offset_address, data)

[Required Argument]

offset_address Offset address
data 16-bit write data

[Sample Code]

Write 16-bit data 0x0146 to offset address 0x04
hmem.write16(0x04, 0x0146)

The write16() is a command which writes 16-bit data to the relevant host memory model.

For the argument offset_address, offset address of the relevant host memory is specified. In the case of the above
sample code, the value of from 0x0000 to 0xFFFE can be specified as the offset address if hmem has been created as
the host memory model which area is 0x10000-0x1FFFF. Writing to offset address 0x04 of hmem is equal to writing
to absolute address 0x10004.

Note:

1. The offset_address argument should be aligned to 2 bytes boundary. (bit[0] is zero)

2. The write16() is a queue-type command. It is pushed into the command queue and executed in the Verilog
simulation process, so please note that this command consumes the Verilog simulation time.

See Also:

1. Simulation Cost

2. Immediate 16-bit write command

5.2. Host Memory class 149

DrivExpress DPI Library, Version 1.0

5.2.7 32-bit write command

write32(offset_address, data)

[Required Argument]

offset_address Offset address
data 32-bit write data

[Sample Code]

Write 32-bit data 0x01234567 to offset address 0x04
hmem.write32(0x04, 0x01234567)

The write32() is a command which writes 16-bit data to the relevant host memory model.

For the argument offset_address, offset address of the relevant host memory is specified. In the case of the above
sample code, the value of from 0x0000 to 0xFFFC can be specified as the offset address if hmem has been created as
the host memory model which area is 0x10000-0x1FFFF. Writing to offset address 0x04 of hmem is equal to writing
to absolute address 0x10004.

Note:

1. The offset_address argument should be aligned to 4 bytes boundary. (bit[1:0] is zero)

2. The write32() is a queue-type command. It is pushed into the command queue and executed in the Verilog
simulation process, so please note that this command consumes the Verilog simulation time.

See Also:

1. Simulation Cost

2. Immediate 32-bit write command

150 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.2.8 Write command

write(offset_address, size, data_buf)

[Required Argument]

offset_address Offset address
size Write byte size
data_buf 8-bit write data array

[Sample Code]

data_buf = [0x00, 0x01, 0x02, 0x03, 0x04, 0x05] # 6 bytes write data
Write 6 bytes increment data to offset address 0x100
hmem.write(0x100, 6, data_buf)

The write() is a command which writes any byte length data to the relevant host memory model.

For the argument offset_address, offset address of the relevant host memory is specified. In the case of the above
sample code, the value of from 0x0000 to 0xFFFF can be specified as the offset address if hmem has been created as
the host memory model which area is 0x10000-0x1FFFF. Writing to offset address 0x100 of hmem is equal to writing
to absolute address 0x10100.

For the argument data_buf, 8-bit data array (list or tuple, etc) should be specified.

Note: The write() is a queue-type command. It is pushed into the command queue and executed in the Verilog
simulation process, so please note that this command consumes the Verilog simulation time.

See Also:

1. Simulation Cost

2. Immediate write command

5.2. Host Memory class 151

DrivExpress DPI Library, Version 1.0

5.2.9 Immediate 8-bit read command

iread8(offset_address)

[Required Argument]

offset_address Offset address

[Returned Value]

data 8-bit read data

[Sample Code]

Read 8-bit data from offset address 0x50 immediately
data8 = hmem.iread8(0x50)

The iread8() is a immediate type command which is executed instantly when interpreted by Python interpreter.
This command reads 8-bit data from the relevant host memory model and returns the value. Users can name the
variable, which stores the read data, anything they want.

For the argument offset_address, offset address of the relevant host memory is specified. In the case of the above
sample code, the value of from 0x0000 to 0xFFFF can be specified as the offset address if hmem has been created
as the host memory model which area is 0x10000-0x1FFFF. Reading from offset address 0x50 of hmem is equal to
reading from absolute address 0x10050.

Note: The iread8() is a icommand. Please note that it is executed earlier than the queue-type command which is
written in advance of this command.

See Also:

1. Command Execution Order

2. 8-bit read command

152 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.2.10 Immediate 16-bit read command

iread16(offset_address)

[Required Argument]

offset_address Offset address

[Returned Value]

data 16-bit read data

[Sample Code]

Read 16-bit data from offset address 0x02 immediately
data16 = hmem.iread16(0x02)

The iread16() is a immediate type command which is executed instantly when interpreted by Python interpreter.
This command reads 8-bit data from the relevant host memory model and returns the value. Users can name the
variable, which stores the read data, anything they want.

For the argument offset_address, offset address of the relevant host memory is specified. In the case of the above
sample code, the value of from 0x0000 to 0xFFFE can be specified as the offset address if hmem has been created
as the host memory model which area is 0x10000-0x1FFFF. Reading from offset address 0x20 of hmem is equal to
reading from absolute address 0x10002.

Note:

1. The offset_address argument should be aligned to 2 bytes boundary. (bit[0] is zero)

2. The iread16() is a icommand. Please note that it is executed earlier than the queue-type command which is
written in advance of this command.

See Also:

1. Command Execution Order

2. 16-bit read command

5.2. Host Memory class 153

DrivExpress DPI Library, Version 1.0

5.2.11 Immediate 32-bit read command

iread32(offset_address)

[Required Argument]

offset_address Offset address

[Returned Value]

data 32-bit read data

[Sample Code]

Read 32-bit data from offset address 0x10 immediately
data32 = hmem.iread32(0x10)

The iread32() is a immediate type command which is executed instantly when interpreted by Python interpreter.
This command reads 8-bit data from the relevant host memory model and returns the value. Users can name the
variable, which stores the read data, anything they want.

For the argument offset_address, offset address of the relevant host memory is specified. In the case of the above
sample code, the value of from 0x0000 to 0xFFFC can be specified as the offset address if hmem has been created
as the host memory model which area is 0x10000-0x1FFFF. Reading from offset address 0x10 of hmem is equal to
reading from absolute address 0x10010.

Note:

1. The offset_address argument should be aligned to 4 bytes boundary. (bit[1:0] is zero)

2. The iread32() is a icommand. Please note that it is executed earlier than the queue-type command which is
written in advance of this command.

See Also:

1. Command Execution Order

2. 32-bit read command

154 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.2.12 Immediate read command

iread(offset_address, size)

[Required Argument]

offset_address Offset address
size Read byte size

[Returned Value]

data_buf 8-bit read data array

[Sample Code]

Read 6 bytes from offset address 0x50 immediately
data_buf = hmem.iread(0x50, 6)

The iread16() is a immediate type command which is executed instantly when interpreted by Python interpreter.
This command reads any byte length data from the relevant host memory model and return the value as 8-bit data array
(list or tuple, etc). Users can name the variable, which stores the read data, anything they want.

For the argument offset_address, offset address of the relevant host memory is specified. In the case of the above
sample code, the value of from 0x0000 to 0xFFFF can be specified as the offset address if hmem has been created
as the host memory model which area is 0x10000-0x1FFFF. Reading from offset address 0x50 of hmem is equal to
reading from absolute address 0x10050.

Note: The iread() is a icommand. Please note that it is executed earlier than the queue-type command which is
written in advance of this command.

See Also:

1. Command Execution Order

2. Read command

5.2. Host Memory class 155

DrivExpress DPI Library, Version 1.0

5.2.13 Immediate 8-bit write command

iwrite8(offset_address, data)

[Required Argument]

offset_address Offset address
data 8-bit write data

[Sample Code]

Write 8-bit data 0x46 to offset address 0x04 immediately
hmem.iwrite8(0x04, 0x46)

The iwrite8() is a immediate type command which is executed instantly when interpreted by Python interpreter.
This command writes 8-bit data to the relevant host memory model.

For the argument offset_address, offset address of the relevant host memory is specified. In the case of the above
sample code, the value of from 0x0000 to 0xFFFF can be specified as the offset address if hmem has been created as
the host memory model which area is 0x10000-0x1FFFF. Writing to offset address 0x04 of hmem is equal to writing
to absolute address 0x10004.

Note: The iwrite8() is a icommand. Please note that it is executed earlier than the queue-type command which
is written in advance of this command.

See Also:

1. Command Execution Order

2. 8-bit write command

156 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.2.14 Immediate 16-bit write command

iwrite16(offset_address, data)

[Required Argument]

offset_address Offset address
data 16-bit write data

[Sample Code]

Write 16-bit data 0x0146 to offset address 0x04 immediately
hmem.iwrite16(0x04, 0x0146)

The iwrite16() is a immediate type command which is executed instantly when interpreted by Python interpreter.
This command writes 16-bit data to the relevant host memory model.

For the argument offset_address, offset address of the relevant host memory is specified. In the case of the above
sample code, the value of from 0x0000 to 0xFFFE can be specified as the offset address if hmem has been created as
the host memory model which area is 0x10000-0x1FFFF. Writing to offset address 0x04 of hmem is equal to writing
to absolute address 0x10004.

Note:

1. The offset_address argument should be aligned to 2 bytes boundary. (bit[0] is zero)

2. The iwrite16() is a icommand. Please note that it is executed earlier than the queue-type command which
is written in advance of this command.

See Also:

1. Command Execution Order

2. 16-bit write command

5.2. Host Memory class 157

DrivExpress DPI Library, Version 1.0

5.2.15 Immediate 32-bit write command

iwrite32(offset_address, data)

[Required Argument]

offset_address Offset address
data 32-bit write data

[Sample Code]

Write 32-bit data 0x01234567 to offset address 0x04 immediately
hmem.iwrite32(0x04, 0x01234567)

The iwrite32() is a immediate type command which is executed instantly when interpreted by Python interpreter.
This command writes 32-bit data to the relevant host memory model.

For the argument offset_address, offset address of the relevant host memory is specified. In the case of the above
sample code, the value of from 0x0000 to 0xFFFC can be specified as the offset address if hmem has been created as
the host memory model which area is 0x10000-0x1FFFF. Writing to offset address 0x04 of hmem is equal to writing
to absolute address 0x10004.

Note:

1. The offset_address argument should be aligned to 4 bytes boundary. (bit[1:0] is zero)

2. The iwrite32() is a icommand. Please note that it is executed earlier than the queue-type command which
is written in advance of this command.

See Also:

1. Command Execution Order

2. 32-bit write command

158 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.2.16 Immediate write command

iwrite(offset_address, size, data_buf)

[Required Argument]

offset_address Offset address
size Write byte size
data_buf 8-bit write data array

[Sample Code]

data_buf = [0x00, 0x01, 0x02, 0x03, 0x04, 0x05] # 6 bytes write data
Write 6 bytes increment data to offset address 0x100 immediately
hmem.iwrite(0x100, 6, data_buf)

The iwrite32() is a immediate type command which is executed instantly when interpreted by Python interpreter.
This command writes any byte length data to the relevant host memory model.

For the argument offset_address, offset address of the relevant host memory is specified. In the case of the above
sample code, the value of from 0x0000 to 0xFFFF can be specified as the offset address if hmem has been created as
the host memory model which area is 0x10000-0x1FFFF. Writing to offset address 0x100 of hmem is equal to writing
to absolute address 0x10100.

For the argument data_buf, 8-bit data array (list or tuple, etc) should be specified.

Note: The iwrite() is a icommand. Please note that it is executed earlier than the queue-type command which is
written in advance of this command.

See Also:

1. Command Execution Order

2. Write command

5.2. Host Memory class 159

DrivExpress DPI Library, Version 1.0

5.2.17 Memory access event wait command

event_wait(event_detector<, timeout_clks>)

[Required Argument]

event_detector Event detector function called when Endpoint device accesses to the relevant host memory model

[Optional Argument]

timeout_clks Time-out clock count (command clock basis)

[Pre-defined Macro]

Macro Name Value Memory Access Type
BYTE_READ 0 8-bit read access
BYTE_WRITE 1 8-bit write access
WORD_READ 2 16-bit read access
WORD_WRITE 3 16-bit write access
DWORD_READ 4 32-bit read access
DWORD_WRITE 5 32-bit write access

[Sample Code]

Event detector function

Waiting event is write access to offset address 0x10 by data 0x1234
def event_detector(time, rw, addr, data):

if (rw == WORD_WRITE) and (addr == 0x10) and (data == 0x1234):
return True # Event happens !

else:
return False # Not desired event

event_detector argument only

Wait for event condition defined by event_detector function
hmem.event_wait(event_detector)

All arguments

Wait for event condition defined by event_detector function or 1000 command clocks
hmem.event_wait(event_detector, 1000)

The event_wait() is a command which waits until Endpoint device accesses the relevant host memory model. The
event condition of exiting from the wait state should be defined in the function, which is referred to as event detector
function. It is necessary to specify the function to the argument event_detector.

When the event_wait() command is waiting for the event, the event detector function is called whenever Endpoint
device accesses to the relevant host memory model. At this time, if the event detector function returns True, the
event_wait() command exits from the waiting state and DrivExpress goes to next command. On the other hand,
if it returns False, the waiting state continues.

If DrivExpress has not received True yet from the event detector function after passing of command clocks by the
timeout_clks argument, the event_wait() command is terminated and DrivExpress goes to next command. This
time-out argument is option. If the argument is omitted, it waits forever until the event detector function returns True.

160 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

When the event detector function is called, the following four arguments are passed so that users can determine if it is
the event condition.

Argument Name The contents which has been set when called
time Simulation time of occurrence of memory access
rw Memory access type (pre-defined macro)
addr Offset address
data Written data or read data

See Also:

Waits for host memory access from Endpoint device

5.2. Host Memory class 161

DrivExpress DPI Library, Version 1.0

5.2.18 Memory access event callback command

event_callback(event_detector, event_handler<, event_handler_arg>)

[Required Argument]

event_detector Event detector function called when Endpoint device accesses to the relevant host memory model
event_handler Event handler function called when the event is detected

[Optional Argument]

event_handler_arg The argument passed to event handler function of event_handler argument

[Returned Value]

event_id Event ID

[Pre-defined Macro]

Macro Name Value Memory Access Type
BYTE_READ 0 8-bit read access
BYTE_WRITE 1 8-bit write access
WORD_READ 2 16-bit read access
WORD_WRITE 3 16-bit write access
DWORD_READ 4 32-bit read access
DWORD_WRITE 5 32-bit write access

[Sample Code]

event_detector and event_handler arguments

Waiting event is write access to offset address 0x10 by data 0x1234
def event_detector(time, rw, addr, data):

if (rw == WORD_WRITE) and (addr == 0x10) and (data == 0x1234):
return True # Event happens !

else:
return False # Not desired event

Called by the event of write access to offset address 0x10 by data 0x1234
def event_handler():

sim.msg("\n\n%%%%%%%%%%%% Processing for Event %%%%%%%%%%%%\n\n")
PUT CODE HERE TO HANDLE THE EVENT

Regsiter event_handler callback function for event condition defined by
event_detector function (Not enabled yet)
ev_hmem = hmem.event_callback(event_detector, event_handler)

All arguments

Waiting event is write access to offset address 0x10
def event_detector0(time, rw, addr, data):

if (rw == WORD_WRITE) and (addr == 0x10):
return True # Event happens !

else:
return False # Not desired event

162 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

Waiting event is read access to offset address 0x20
def event_detector1(time, rw, addr, data):

if (rw == WORD_READ) and (addr == 0x20):
return True # Event happens !

else:
return False # Not desired event

Called by two events which are write access to offset address 0x10 and
read access to offset address 0x20
def event_handler(event_type):

if event_type == "W-A10-D1234":
sim.msg("\n\n%%%%%%%%%%%% Processing for Event 0 %%%%%%%%%%%%\n\n")
PUT CODE HERE TO HANDLE THE EVENT

elif event_type == "R-A20-D5678":
sim.msg("\n\n%%%%%%%%%%%% Processing for Event 1 %%%%%%%%%%%%\n\n")
PUT CODE HERE TO HANDLE THE EVENT

Regsiter event_handler callback function for event conditions defined by
event_detector0 and event_detector1 functions (Not enabled yet)
ev_hmem0 = hmem.event_callback(event_detector0, event_handler, "W-A10-D1234")
ev_hmem1 = hmem.event_callback(event_detector1, event_handler, "R-A20-D5678")

The event_callback() is a command which registers the function which is called back when Endpoint device
accesses the relevant host memory model. This function is referred to as event handler function.

The event condition of calling the event handler function should be defined in the function, which is referred to as
event detector function.

It is necessary to specify the event detector function and the event handler function to the arguments event_detector
and event_handler respectively. As an option, one argument can be passed to the event handler function and it is
specified to the event_handler_arg argument.

The event detector function is called whenever Endpoint device accesses to the relevant host memory model even if
other command is in execution. At this time, if the event detector function returns True, the event handler function is
called. On the other hand, if it returns False, the event handler function is not called.

When the event detector function is called, the following four arguments are passed so that users can determine if it is
the event condition.

Argument Name The contents which has been set when called
time Simulation time of occurrence of memory access
rw Memory access type (pre-defined macro)
addr Offset address
data Written data or read data

The event_callback() command returns event ID. Users can name this event ID anything they want. By using
this event ID, users can enable or disable the event_callback() command. By default, it is disabled. When it
is disabled, the event detector function is never called even if Endpoint device accesses to the relevant host memory
model. To enable the command, it is necessary to execute the enable_event() command by the event ID.

Tip: The event_callback() is a immediate type command although it doesn’t have prefix i.

5.2. Host Memory class 163

DrivExpress DPI Library, Version 1.0

See Also:

1. Registers callback function for host memory access

2. MSI Interrupt Handling

3. Event enabling command

4. Event disabling command

164 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.2.19 Event enabling command

enable_event(event_id)

[Required Argument]

event_id Event ID returned by event_callback() command

[Sample Code]

Enable callabck event of event ID "ev_hmem"
hmem.enable_event(ev_hmem)

The enable_event() is a command which enables event_callback() command. By executing this com-
mand by specifying the event ID, which is returned by event_callback() command, the event_callback()
command is enabled.

See Also:

1. Registers callback function for host memory access

2. Memory access event callback command

3. Event disabling command

5.2. Host Memory class 165

DrivExpress DPI Library, Version 1.0

5.2.20 Event disabling command

disable_event(event_id)

[Required Argument]

event_id Event ID returned by event_callback() command

[Sample Code]

Disable callabck event of event ID "ev_hmem"
hmem.disable_event(ev_hmem)

The disable_event() is a command which disables event_callback() command. By executing this com-
mand by specifying the event ID, which is returned by event_callback() command, the event_callback()
command is disabled.

See Also:

1. Registers callback function for host memory access

2. Memory access event callback command

3. Event enabling command

166 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.2.21 Memory dump command

dump(<offset_address, size>)

[Optional Argument]

offset_address Start offset address
size Dump byte size

[Sample Code]

No argument

Output all "hmem" memory data to console
hmem.dump()

offset_address argument only

Output "hmem" memory data, which area is from offset 0x100 to end, to console
hmem.dump(0x100)

All arguments

Output 256 byte "hmem" memory data, which starts from offset 0x100, to console
hmem.dump(0x100, 256)

The dump() is a command which dumps the contents of the relevant host memory model to console (standard output).

For the argument offset_address, offset address of the relevant host memory is specified. In the case of the above
sample code, the value of from 0x0000 to 0xFFFF can be specified as the offset address if hmem has been created as
the host memory model which area is 0x10000-0x1FFFF. Dumping from offset address 0x100 of hmem is equal to
dumping from absolute address 0x10100.

Note: The dump() is a queue-type command. It is pushed into the command queue and executed in the Verilog
simulation process, so please note that this command consumes the Verilog simulation time.

See Also:

1. Dumps the contents of host memory

2. Simulation Cost

3. Immediate memory dump command

5.2. Host Memory class 167

DrivExpress DPI Library, Version 1.0

5.2.22 Read memory file command

read_file(file_name)

[Required Argument]

file_name String of memory file name

[Sample Code]

Load memory data from "hmem.txt" file to "hmem" memory
hmem.read_file("hmem.txt")

The read_file() is a command which loads the contents of the relevant host memory model from the specified
file.

The contents of file must be the same format output in dump() or write_file() command.

Note: The read_file() is a queue-type command. It is pushed into the command queue and executed in the
Verilog simulation process, so please note that this command consumes the Verilog simulation time.

See Also:

1. Loads the contests of host memory from file

2. Simulation Cost

3. Immediate read memory file command

168 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.2.23 Write memory file command

write_file(file_name<, offset_address, size>)

[Required Argument]

file_name String of memory file name

[Optional Argument]

offset_address Start offset address
size Dump byte size

[Sample Code]

file_name argument only

Output all "hmem" memory data to file "hmem.txt"
hmem.write_file("hmem.txt")

file_name and offset_address arguments

Output "hmem" memory data, which area is from offset 0x100 to end,
to file "hmem.txt"
hmem.write_file("hmem.txt", 0x100)

All arguments

Output 256 byte "hmem" memory data, which starts from offset 0x100,
to file "hmem.txt"
hmem.write_file("hmem.txt", 0x100, 256)

The write_file() is a command which dumps the contents of the relevant host memory model to the specified
file.

For the argument offset_address, offset address of the relevant host memory is specified. In the case of the above
sample code, the value of from 0x0000 to 0xFFFF can be specified as the offset address if hmem has been created as
the host memory model which area is 0x10000-0x1FFFF. Dumping the contents from offset address 0x100 of hmem
to the file is equal to Dumping the contents from absolute address 0x10100 to the file.

Note: The write_file() is a queue-type command. It is pushed into the command queue and executed in the
Verilog simulation process, so please note that this command consumes the Verilog simulation time.

See Also:

1. Dumps the contents of host memory to file

2. Simulation Cost

3. Immediate write memory file command

5.2. Host Memory class 169

DrivExpress DPI Library, Version 1.0

5.2.24 Immediate memory dump command

idump(<offset_address, size>)

[Optional Argument]

offset_address Start offset address
size Dump byte size

[Sample Code]

No argument

Output all "hmem" memory data to console immediately
hmem.idump()

offset_address argument only

Output "hmem" memory data, which area is from offset 0x100 to end,
to console immediately
hmem.idump(0x100)

All arguments

Output 256 byte "hmem" memory data, which starts from offset 0x100,
to console immediately
hmem.idump(0x100, 256)

idump() is a immediate type command which is executed instantly when interpreted by Python interpreter. This
command dumps the contents of the relevant host memory model to console (standard output).

For the argument offset_address, offset address of the relevant host memory is specified. In the case of the above
sample code, the value of from 0x0000 to 0xFFFF can be specified as the offset address if hmem has been created as
the host memory model which area is 0x10000-0x1FFFF. Dumping from offset address 0x100 of hmem is equal to
dumping from absolute address 0x10100.

Note: The idump() is a icommand. Please note that it is executed earlier than the queue-type command which is
written in advance of this command.

See Also:

1. Dumps the contents of host memory

2. Command Execution Order

3. Memory dump command

170 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.2.25 Immediate read memory file command

iread_file(file_name)

[Required Argument]

file_name String of memory file name

[Sample Code]

Load memory data from "hmem.txt" file to "hmem" memory immediately
hmem.iread_file("hmem.txt")

iread_file() is a immediate type command which is executed instantly when interpreted by Python interpreter.
This command loads the contents of the relevant host memory model from the specified file.

The contents of file must be the same format output in dump() or write_file() command.

Note: The iread_file() is a icommand. Please note that it is executed earlier than the queue-type command
which is written in advance of this command.

See Also:

1. Loads the contests of host memory from file

2. Command Execution Order

3. Read memory file command

5.2. Host Memory class 171

DrivExpress DPI Library, Version 1.0

5.2.26 Immediate write memory file command

iwrite_file(file_name<, offset_address, size>)

[Required Argument]

file_name String of memory file name

[Optional Argument]

offset_address Start offset address
size Dump byte size

[Sample Code]

file_name argument only

Output all "hmem" memory data to file "hmem.txt" immediately
hmem.iwrite_file("hmem.txt")

file_name and offset_address arguments

Output "hmem" memory data, which area is from offset 0x100 to end,
to file "hmem.txt" immediately
hmem.iwrite_file("hmem.txt", 0x100)

All arguments

Output 256 byte "hmem" memory data, which starts from offset 0x100,
to file "hmem.txt" immediately
hmem.iwrite_file("hmem.txt", 0x100, 256)

iwrite_file() is a immediate type command which is executed instantly when interpreted by Python interpreter.
This command dumps the contents of the relevant host memory model to the specified file.

For the argument offset_address, offset address of the relevant host memory is specified. In the case of the above
sample code, the value of from 0x0000 to 0xFFFF can be specified as the offset address if hmem has been created as
the host memory model which area is 0x10000-0x1FFFF. Dumping the contents from offset address 0x100 of hmem
to the file is equal to Dumping the contents from absolute address 0x10100 to the file.

Note: The iwrite_file() is a icommand. Please note that it is executed earlier than the queue-type command
which is written in advance of this command.

See Also:

1. Dumps the contents of host memory to file

2. Command Execution Order

3. Write memory file command

172 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.3 Simulation Control class

SimControl()

[Returned Value]

Instance ID ID of Simulation Control instance

[Sample Code]

sim = SimControl() # Create Simulation Control instance

Users can name the variable, which stores instance ID, anything they want. Instance of Simulation Control class must
be unique. Simulation Control class provides the simulation related functions.

Table 5.3: Commands and parameters of Simulation Control class

No Name Brief Description
1 wait() Wait command
2 reset() Reset command
3 stop() Simulation stop command
4 quit() Simulation quit command
5 stats() Simulation statistics print command
6 msg() Print message command
7 imsg() Immediate print message command
8 run_string() Run code string command
9 run_file() Run script file command
10 include() Expand script file command
11 log_file() Log file generation command
12 is_log_style_for_msg_cmd DrivExpress log style for message command enabling parameter
13 license_file License file setting parameter
14 cmd_interval_clks Command execution interval setting parameter
15 random_seed Random seed value setting parameter
16 time Simulation time get parameter

5.3. Simulation Control class 173

DrivExpress DPI Library, Version 1.0

5.3.1 Wait command

wait(clks)

[Required Argument]

clks Wait clock count (command clock basis)

[Sample Code]

Wait for 50 command closk here
sim.wait(50)

The wait() is a command which waits for the time of command clocks by the clks argument to go to next command.

Tip: Only queue-type command is blocked by wait() command. Because icommand or parameter setting are
executed instantly without queueing, those are not blocked.

174 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.3.2 Reset command

reset(clks)

[Required Argument]

clks Reset clock count (command clock basis)

[Sample Code]

Reset for 50 command closk here
sim.reset(50)

The reset() is a command which asserts the system reset signal during the time of command clocks by the clks
argument. It does not go to next command during asserting the reset signal.

Tip: Only queue-type command is blocked by reset() command. Because icommand or parameter setting are
executed instantly without queueing, those are not blocked.

See Also:

Command Processor Model

5.3. Simulation Control class 175

DrivExpress DPI Library, Version 1.0

5.3.3 Simulation stop command

stop()

[Sample Code]

Stop simulation
sim.stop()

The stop() is a command which stops the Verilog simulation.

176 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.3.4 Simulation quit command

quit()

[Sample Code]

Finish simulation
sim.quit()

The quit() is a command which quits the Verilog simulation.

5.3. Simulation Control class 177

DrivExpress DPI Library, Version 1.0

5.3.5 Simulation statistics print command

stats()

[Sample Code]

Output simulation result to console
sim.stats()

The stats() is a command which prints out the statistics of the Verilog simulation to console (standard output).
Three stats, which are the number of information messages, warning messages, and error messages, are printed out.

178 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.3.6 Print message command

msg(file_name)

[Required Argument]

message_string Output message string

[Sample Code]

Output "Hello DrivExpress" message to console
sim.msg("Hello DrivExpress")

The msg() is a command which prints out the message string specified by the argument message_string to console
(standard output).

Note: The msg() is a queue-type command. It is pushed into the command queue and executed in the Verilog
simulation process, so please note that this command consumes the Verilog simulation time.

See Also:

1. Simulation Cost

2. Immediate print message command

5.3. Simulation Control class 179

DrivExpress DPI Library, Version 1.0

5.3.7 Immediate print message command

imsg(file_name)

[Required Argument]

message_string Output message string

[Sample Code]

Output "Hello DrivExpress" message to console immediately
sim.imsg("Hello DrivExpress")

imsg() is a immediate type command which is executed instantly when interpreted by Python interpreter. This
command prints out the message string specified by the argument message_string to console (standard output).

Note: The imsg() is a icommand. Please note that it is executed earlier than the queue-type command which is
written in advance of this command.

See Also:

1. Command Execution Order

2. Print message command

180 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.3.8 Run code string command

run_string(code_string)

[Required Argument]

code_string String of Python code

[Sample Code]

Output 16-bit read value of "hmem" memory address offfset 0 to
standard output of Python
sim.run_string("print hex(hmem.iread16(0))")

The run_string() is a command which executes the string specified by the argument code_string as Python code.

Tip: Because the run_string() is a queue-type command, by specifying the instant execution code like
icommand or parameter setting as the code string, the execution of those code be delayed until the run_string()
command is executed.

See Also:

Delayed Execution

5.3. Simulation Control class 181

DrivExpress DPI Library, Version 1.0

5.3.9 Run script file command

run_file(file_name)

[Required Argument]

file_name String of Python script file name

[Sample Code]

Execute Python script file "memory_check.py"
sim.run_file("memory_check.py")

The run_file() is a command which executes the string specified by the argument file_name as Python script file.

Tip: Because the run_file() is a queue-type command, by writing the instant execution code like icommand or
parameter setting in the script file, the execution of those code can be delayed until the run_file() command is
executed.

See Also:

1. File Execution

2. Expand script file command

182 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.3.10 Expand script file command

include(file_name)

[Required Argument]

file_name String of Python script file name

[Sample Code]

Expand Python script file "memory_check.py"
sim.include("memory_check.py")

The include() is a command which expands the Python script file specified by the argument file_name.

Tip: Because the include() is a immediate type command unlike the run_file() command, the script file is
expanded instantly when interpreted by Python interpreter.

See Also:

1. File Expansion

2. Run script file command

5.3. Simulation Control class 183

DrivExpress DPI Library, Version 1.0

5.3.11 Log file generation command

log_file(file_name<, “app”>)

[Required Argument]

file_name String of log file name

[Optional Argument]

“app” Append mode (The string “app” must be specified)

[Sample Code]

file_name argument only

Output DrivExpress log messages to file "drivexpress.log"
sim.log_file("drivexpress.log")

All arguments

Output DrivExpress log messages to file "drivexpress.log" by append mode
sim.log_file("drivexpress.log", "app")

The log_file() is a command which prints out the log messages of DrivExpress to the specified file.

Tip: The log_file() is a immediate type command although it doesn’t have prefix i.

184 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.3.12 DrivExpress log style for message command enabling parameter

is_log_style_for_msg_cmd

[Setting Value]

True DrivExpress information is added to the message printed by msg() and imsg() commands
False DrivExpress information is not added to the message printed by msg() and imsg() commands

[Default Value]

False DrivExpress information is not added to the message printed by msg() and imsg() commands

[Sample Code]

Enable DrivExpress log style for msg() command

sim.is_log_style_for_msg_cmd = True

Disable DrivExpress log style for msg() command

sim.is_log_style_for_msg_cmd = False

When the is_log_style_for_msg_cmd is True, DrivExpress log style information, which is the string
“DrivExpress INFO from CMD PROCESS> Time XXXXXX.000000: ”, is added to the head of the mes-
sage printed by msg() and imsg() commands. When it is False, the message is printed out directly.

5.3. Simulation Control class 185

DrivExpress DPI Library, Version 1.0

5.3.13 License file setting parameter

license_file

[Setting Value]

String of license file location path

[Default Value]

"./drivexpress_lic_enc.bin"

[Sample Code]

For Linux

Use ‘/‘ character as directory separator
sim.license_file = "/opt/drivexpress/drivexpress_lic_enc.bin"

For Windows

Use ‘/‘ instead of ‘\‘ character as directory separator
sim.license_file = "c:/drivexpress/drivexpress_lic_enc.bin"

The license_file is a parameter which sets the location path of DrivExpress license file. Unless setting this
parameter, the license file check is done by assuming that the license file drivexpress_lic_enc.bin is located
in the Verilog simulation running directory.

186 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.3.14 Command execution interval setting parameter

cmd_interval_clks

[Setting Value]

0 to 65535 Interval clock count of each command execution (command clock basis)

[Default Value]

8 Command interval is 8 command clocks

[Sample Code]

Insert 4 command colock period between each command execution
sim.cmd_interval_clks = 4

The cmd_interval_clks is a parameter which sets the interval inserted in between each command execution.
The interval is specified by clock count based on command clock.

See Also:

Changes command execution interval

5.3. Simulation Control class 187

DrivExpress DPI Library, Version 1.0

5.3.15 Random seed value setting parameter

random_seed

[Setting Value]

0 to 65535 Random seed value

[Default Value]

time(NULL) Simulation start time

[Sample Code]

Set 16 as random seed for DrivExpress internal pseudo-random generator
sim.random_seed = 16

The random_seed is a parameter which sets the random seed value for the pseudo-random generator which is used
in DrivExpress internally. Unless setting this parameter, the start time of running the simulation is used as the random
seed value.

188 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.3.16 Simulation time get parameter

time

[Returned Value]

Current Verilog simulation time

[Sample Code]

Output current simulation time to standard output of Python
print sim.time

The time is a parameter which gets the current Verilog simulation time. Setting this parameter is prohibited.

Tip: The time parameter returns the simulation time as of the time when it is interpreted by Python interpreter.
Because of this, the following cases will be effective.

1. Used in the code string executed by run_string() command

2. Used in the script file executed by run_file() command

See Also:

1. Run code string command

2. Run script file command

5.3. Simulation Control class 189

DrivExpress DPI Library, Version 1.0

5.4 Pre-defined Macro

DrviExpress has defined some macros by default. Those macros can be used to write test pattern. The following
macros are provided by DrivExpress.

1. Link State Definition Macro

2. Memory Access Definition Macro

3. Configuration Space Register Address Definition Macro

4. Configuration Space Register Data Definition Macro

190 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.4.1 Link State Definition Macro

Link state definition macros can be used by link_event_wait() command.

Table 5.4: Link State Definition

Macro Name Value Link State
LINK_DETECT 0 Link Detect State
LINK_TS1_EXCHANGE 1 Link TS1 Exchange State
LINK_TS2_EXCHANGE 2 Link TS2 Exchange State
LINK_CONFIG_LINKWIDTH 3 Link Configuration Link Width State
LINK_CONFIG_LINKWIDTH_ACCEPT 4 Link Configuration Link Width Accept State
LINK_CONFIG_COMPLETE 5 Link Configuration Complete State
LINK_CONFIG_IDLE 6 Link Configuration Idle State
LINK_RECOVERY_RCVRLOCK 7 Link Recovery Receiver Lock State
LINK_RECOVERY_RCVRCFG 8 Link Recovery Configuration State
LINK_RECOVERY_SPEED 9 Link Recovery Speed State
LINK_RECOVERY_IDLE 10 Link Recovery Idle State
LINK_UP 11 Link Up State
LINK_FLOW_CONTROL_INIT 12 Link Flow Control Initialization State
LINK_READY 13 Link Ready State

See Also:

Link event detection command

5.4. Pre-defined Macro 191

DrivExpress DPI Library, Version 1.0

5.4.2 Memory Access Definition Macro

The following memory access type definition macros can be used by event_wait() and event_callback()
commands.

Table 5.5: Memory Access Type Definition

Macro Name Value Memory Access Type
BYTE_READ 0 8-bit read access
BYTE_WRITE 1 8-bit write access
WORD_READ 2 16-bit read access
WORD_WRITE 3 16-bit write access
DWORD_READ 4 32-bit read access
DWORD_WRITE 5 32-bit write access

See Also:

1. Memory access event wait command

2. Memory access event callback command

192 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.4.3 Configuration Space Register Address Definition Macro

The following configuration space register address definition macros can be used by PCI configuration space access
commands.

Table 5.6: Configuration Space Register Address Definition

Macro Name Address Configuration Register
VENDOR_ID 0x00 Vendor ID Register
DEVICE_ID 0x02 Device ID Register
COMMAND 0x04 Command Register
STATUS 0x06 Status Register
REVISION_ID 0x08 Revision ID Register
CLASS_CODE_INTERFACE 0x09 Class Interface Register
CLASS_CODE_SUB_CLASS 0x0A Sub Class Register
CLASS_CODE_BASE_CLASS 0x0B Base Class Register
CACHE_LINE_SIZE 0x0C Cache Line Size Register
LATENCY_TIMER 0x0D Latency Timer Register
HEADER_TYPE 0x0E Header Type Register
BIST 0x0F BIST Register
BAR0 0x10 Base Address 0 Register (32-bit)
BAR0_LO 0x10 Base Address 0 Low Register (64-bit)
BAR1 0x14 Base Address 1 Register (32-bit)
BAR0_HI 0x14 Base Address 0 High Register (64-bit)
BAR2 0x18 Base Address 2 Register (32-bit)
BAR1_LO 0x18 Base Address 1 Low Register (64-bit)
BAR3 0x1C Base Address 3 Register (32-bit)
BAR1_HI 0x1C Base Address 1 High Register (64-bit)
BAR4 0x20 Base Address 4 Register (32-bit)
BAR2_LO 0x20 Base Address 2 Low Register (64-bit)
BAR5 0x24 Base Address 5 Register (32-bit)
BAR2_HI 0x24 Base Address 2 High Register (64-bit)
CARDBUS_CIS_PTR 0x28 Card Bus CIS Pointer Register
SUBSYSTEM_VENDOR_ID 0x2C Subsystem Vendor ID Register
SUBSYSTEM_ID 0x2E Subsystem ID Register
EXPANSION_ROM_BAR 0x30 Expansion ROM Base Address Register
CAP_PTR 0x34 Capability Pointer Register
INTERRUPT_LINE 0x3C Interrupt Line Register
INTERRUPT_PIN 0x3D Interrupt Pin Register
MIN_GNT 0x3E Minimum Grant Register
MAX_LAT 0x3F Minimum Latency Register
MSI_CAP_ID 0x50 MSI Capability ID Register
MSI_NEXT_CAP_PTR 0x51 MSI Next Capability Pointer Register
MSI_MSG_CONTROL 0x52 MSI Message Control Register
MSI_MSG_ADDRESS 0x54 MSI Address Register (32-bit)
MSI_MSG_ADDRESS_LO 0x54 MSI Address Low Register (64-bit)
MSI_MSG_ADDRESS_HI 0x58 MSI Address High Register (64-bit)
MSI_MSG_DATA 0x5C MSI Message Data Register
MSIX_CAP_ID 0x68 MSIX Capability ID Register
MSIX_NEXT_CAP_PTR 0x69 MSIX Next Capability Pointer Register
MSIX_MSG_CONTROL 0x6A MSIX Message Control Register
MSIX_TABLE_OFFSET_BIR 0x6C MSIX Table Offset BIR Register

Continued on next page

5.4. Pre-defined Macro 193

DrivExpress DPI Library, Version 1.0

Table 5.6 – continued from previous page
Macro Name Address Configuration Register
MSIX_PBA_OFFSET_BIR 0x70 MSIX PBA Offset BIR Register
PM_CAP_ID 0x78 Power Management Capability ID Register
PM_NEXT_CAP_PTR 0x79 Power Management Next Capability Pointer Register
PM_CAP 0x7A Power Management Capability Register
PM_CONTROL_STATUS 0x7C Power Management Control Status Register
PM_BRIDGE_EXTENSION 0x7E Power Management Bridge Extension Register
PM_DATA 0x7F Power Management Data Register
PCIE_CAP_ID 0x80 PCI Express Capability ID Register
PCIE_NEXT_CAP_PTR 0x81 PCI Express Next Capability Pointer Register
PCIE_CAP 0x82 PCI Express Capability Register
PCIE_DEVICE_CAP 0x84 PCI Express Device Capability Register
PCIE_DEVICE_CONTROL 0x88 PCI Express Device Control Register
PCIE_DEVICE_STATUS 0x8A PCI Express Device Status Register
PCIE_LINK_CAP 0x8C PCI Express Link Capability Register
PCIE_LINK_CONTROL 0x90 PCI Express Link Control Register
PCIE_LINK_STATUS 0x92 PCI Express Link Status Register

Note: The address values after MSI_CAP_ID register are ALTERA PCI Express IP specific. For the other company
IPs, those values might differ.

See Also:

1. Configuration space 8-bit read command

2. Configuration space 16-bit read command

3. Configuration space 32-bit read command

4. Configuration space 8-bit write command

5. Configuration space 16-bit write command

6. Configuration space 32-bit write command

194 Chapter 5. Class References

DrivExpress DPI Library, Version 1.0

5.4.4 Configuration Space Register Data Definition Macro

The following configuration space register data definition macros can be used by PCI configuration space access
commands.

Table 5.7: Capability ID Definition

Macro Name Value Capability ID
CAP_ID_PM 0x01 Power Management Capability ID
CAP_ID_MSI 0x05 MSI Capability ID
CAP_ID_PCIE 0x10 PCI Express Capability ID
CAP_ID_MSIX 0x11 MSIX Capability ID

Table 5.8: Command Register Bit/Field Definition

Macro Name Value Bit Description of Bit/Field
INT_DISABLE 0x0400 10 Interrupt Disable Bit
SERR_ENABLE 0x0100 8 SERR Enable Bit
PERR_RESPONSE 0x0040 6 Parity Error Response Bit
BUS_MASTER_ENABLE 0x0004 2 Bus Mater Enable Bit
MEM_SPACE_ENABLE 0x0002 1 Memory Address Space Decode Enable Bit
IO_SPACE_ENABLE 0x0001 0 I/O Address Space Decode Enable Bit

Table 5.9: MSI Control Register Bit/Field Definition

Macro Name Value Bit Description of Bit/Field
MSI_64BIT 0x0080 7 64bit MSI Address Bit
MULTI_MSG_ENABLE_MASK 0x0070 6:4 Multiple Message Enable Field Mask
MULTI_MSG_CAP_MASK 0x000E 3:1 Multiple Message Capability Field Mask
MSI_ENABLE 0x0001 0 MSI Enable Bit

Table 5.10: MSIX Control Register Bit/Field Definition

Macro Name Value Bit Description of Bit/Field
MSIX_ENABLE 0x8000 15 MSIX Enable Bit
FUNCTION_MASK 0x4000 14 Function Mask Bit
TABLE_SIZE_MASK 0x07FF 10:0 Table Size Field Mask

5.4. Pre-defined Macro 195

DrivExpress DPI Library, Version 1.0

Table 5.11: Device Control Register Bit/Field Definition

Macro Name Value Bit Description of Bit/Field
MAX_READ_REQ_SIZE_MASK 0x7000 14:12 Max Read Request Size Field Mask
MAX_READ_REQ_SIZE_128B 0x0000 14:12 128 byte Max Read Request Size
MAX_READ_REQ_SIZE_256B 0x1000 14:12 256 byte Max Read Request Size
MAX_READ_REQ_SIZE_512B 0x2000 14:12 512 byte Max Read Request Size
MAX_READ_REQ_SIZE_1KB 0x3000 14:12 1KB byte Max Read Request Size
MAX_READ_REQ_SIZE_2KB 0x4000 14:12 2KB byte Max Read Request Size
MAX_READ_REQ_SIZE_4KB 0x5000 14:12 4KB byte Max Read Request Size
ENABLE_NO_SNOOP 0x0800 11 Enable No Snoop Bit
AUX_PWR_PM_ENABLE 0x0400 10 AUX Power PM Enable Bit
PHANTOM_ENABLE 0x0200 9 Phantom Functions Enable Bit
EXTENDED_TAG_ENABLE 0x0100 8 Extended Tag Field Enable Bit
MAX_PAYLOAD_SIZE_MASK 0x00E0 7:5 Max Payload Size Field Mask
MAX_PAYLOAD_SIZE_128B 0x0000 7:5 128 byte Max Payload Size
MAX_PAYLOAD_SIZE_256B 0x0020 7:5 256 byte Max Payload Size
MAX_PAYLOAD_SIZE_512B 0x0040 7:5 512 byte Max Payload Size
MAX_PAYLOAD_SIZE_1KB 0x0060 7:5 1KB byte Max Payload Size
MAX_PAYLOAD_SIZE_2KB 0x0080 7:5 2KB byte Max Payload Size
MAX_PAYLOAD_SIZE_4KB 0x00A0 7:5 4KB byte Max Payload Size
ENABLE_RELAX_ORDERING 0x0010 4 Enable Relaxed Ordering Bit
UR_REPORT_ENABLE 0x0008 3 Unsupported Request Reporting Enable Bit
FATAL_ERR_REPORT_ENABLE 0x0004 2 Fatal Error Reporting Enable Bit
NON_FATAL_ERR_REPORT_ENABLE 0x0002 1 Non-Fatal Error Reporting Enable Bit
CORRECTABLE_ERR_REPORT_ENABLE 0x0001 0 Correctable Error Reporting Enable Bit

Table 5.12: Link Control Register Bit/Field Definition

Macro Name Value Bit Description of Bit/Field
EXTENDED_SYNC 0x0080 7 Extended Sync Bit
COMMON_CLK_CONFIG 0x0040 6 Common Clock Configuration Bit
RCB_128 0x0008 3 RCB Bit (RCB 128 byte)
RCB_64 0x0000 3 RCB 64 byte
ASPM_CONTROL_MASK 0x0003 1:0 ASPM Control Field Mask
ASPM_CONTROL_INVALID 0x0000 1:0 ASPM Disabled
ASPM_CONTROL_L0s 0x0001 1:0 ASPM L0s Entry Enabled
ASPM_CONTROL_L1 0x0002 1:0 ASPM L1 Entry Enabled
ASPM_CONTROL_L0s_L1 0x0003 1:0 ASPM L0s and L1 Entry Enabled

See Also:

1. Configuration space 8-bit read command

2. Configuration space 16-bit read command

3. Configuration space 32-bit read command

4. Configuration space 8-bit write command

5. Configuration space 16-bit write command

6. Configuration space 32-bit write command

196 Chapter 5. Class References

INDEX

B
bus_num, 132

C
cfg_read16(), 93
cfg_read32(), 94
cfg_read8(), 92
cfg_write16(), 96
cfg_write32(), 97
cfg_write8(), 95
cmd_interval_clks, 187
completion_wait(), 107

D
device_num, 133
disable_event(), 166
dump(), 167

E
enable_event(), 165
event_callback(), 162
event_wait(), 160

F
function_num, 134

H
HostMemory(), 141

I
idump(), 170
imsg(), 180
include(), 183
iread(), 155
iread16(), 153
iread32(), 154
iread8(), 152
iread_file(), 171
is_4kb_boundary_check, 114
is_64bit_address, 108
is_completion_wait, 115

is_ecrc, 110
is_extended_tag, 113
is_log_style_for_msg_cmd, 185
is_mem_write_sync, 116
is_rcb_128byte, 112
is_rcb_multi_completions, 111
is_report_cfg_read_tlp, 125
is_report_cfg_write_tlp, 126, 128
is_report_cpl_with_data_tlp, 129
is_report_cpl_without_data_tlp, 130
is_report_init_fc, 124
is_report_ltssm, 123
is_report_mem_read_tlp, 127
is_speed_change, 109
is_watch_destriper_deframer, 122
is_watch_egress_dllp, 119
is_watch_egress_tlp, 120
is_watch_framer_striper, 121
is_watch_ingress_dllp, 117
is_watch_ingress_tlp, 118
iwrite(), 159
iwrite16(), 157
iwrite32(), 158
iwrite8(), 156
iwrite_file(), 172

L
license_file, 186
link_event_wait(), 90
log_file(), 184

M
max_fifo_count_egress_tlp, 136
max_fifo_count_ingress_tlp, 137
max_payload_size, 135
mem_read(), 101
mem_read16(), 99
mem_read32(), 100
mem_read8(), 98
mem_write(), 106
mem_write16(), 104

197

DrivExpress DPI Library, Version 1.0

mem_write32(), 105
mem_write8(), 103
msg(), 179

N
nptlp_timeout_clks, 140

P
PcieRootComplex(), 88
proc_wait_clks_egress_tlp, 138
proc_wait_clks_ingress_tlp, 139

Q
quit(), 177

R
random_seed, 188
read(), 146
read16(), 144
read32(), 145
read8(), 143
read_file(), 168
requester_id, 131
reset(), 175
run_file(), 182
run_string(), 181

S
SimControl(), 173
stats(), 178
stop(), 176

T
time, 189

W
wait(), 174
write(), 151
write16(), 149
write32(), 150
write8(), 148
write_file(), 169

198 Index

	What is DrivExpress
	Features
	Simulation Environment
	References

	Tutorial
	Making the DUT
	Making The Test Environment
	Writing A Test Script (Part 1)
	Creating The Simulation Model
	Access to Configuration Registers

	Running The Verilog Simulation
	Writing A Test Script (Part 2)
	MSI Interrupt Handling
	Preparation for the DMA transfer
	Starting the DMA transfer and waiting for completion
	Non-Posted and Posted

	About the automatic TCL script

	Best Practices
	Python Classes
	Command Queue and Command Type
	Simulation Cost
	Command Execution Order

	Split of Test Script Files
	File Expansion
	File Execution

	Delayed Execution
	Delayed Parameter Setting
	Delayed Function Execution

	PCI Express Commands and TLPs
	Split by Max Payload Size
	Relationship between Memory Read TLP and Tag Field
	Passing Memory Write Command

	DrivExress TLP FIFO
	Egress TLP FIFO
	Ingress TLP FIFO
	Non-Posted Request FIFO

	Verilog Task and Shell Module
	Command Processor Model
	PCI Express PIPE Interface Model

	Connection Methods in Top Testbench
	Command Processor Part
	Connection between PIPE interface model and DUT

	Cookbook
	Issues memory read/write TLP with 64-bit address
	Changes max payload size of memory read/write TLP
	Controls DrivExpress log output
	Changes command execution interval
	Issues next command after receiving completion packet -Part 1-
	Issues next command after receiving completion packet -Part 2-
	Sets Read Completion Boundary to 128 bytes
	Transmits completion TLP including max payload size data
	Expands tag field to 8-bit
	Adds CRC in Transaction Layer
	Changes requester ID
	Specifies Bus number, Device number, and Function number
	Waits until PCI Express Link is ready
	Dumps the contents of host memory
	Dumps the contents of host memory to file
	Loads the contests of host memory from file
	Waits for host memory access from Endpoint device
	Registers callback function for host memory access

	Class References
	PCI Express Root Complex class
	Link event detection command
	Configuration space 8-bit read command
	Configuration space 16-bit read command
	Configuration space 32-bit read command
	Configuration space 8-bit write command
	Configuration space 16-bit write command
	Configuration space 32-bit write command
	Memory space 8-bit read command
	Memory space 16-bit read command
	Memory space 32-bit read command
	Memory space read command
	Memory space 8-bit write command
	Memory space 16-bit write command
	Memory space 32-bit write command
	Memory space write command
	Completion packet wait command
	64-bit memory address enabling parameter
	Gen2 enabling parameter
	End-to-end CRC enabling parameter
	Read Completion Boundary enabling parameter
	128 bytes Read Completion Boundary enabling parameter
	Extended tag field enabling parameter
	4KB boundary check enabling parameter
	Completion packet wait parameter
	Memory write command synchronization parameter
	Ingress DLLP raw data print enabling parameter
	Ingress TLP raw data print enabling parameter
	Egress DLLP raw data print enabling parameter
	Egress TLP raw data print enabling parameter
	Framer/Striper behavior print enabling parameter
	De-Striper/De-Framer behavior print enabling parameter
	LTSSM report enabling parameter
	InitFC report enabling parameter
	Configuration read TLP report enabling parameter
	Configuration write TLP report enabling parameter
	Memory read TLP report enabling parameter
	Memory write TLP report enabling parameter
	Completion with data TLP report enabling parameter
	Completion without data TLP report enabling parameter
	Requester ID setting parameter
	Bus number setting parameter
	Device number setting parameter
	Function number setting parameter
	Max Payload Size setting parameter
	Egress TLP FIFO size setting parameter
	Ingress TLP FIFO size setting parameter
	Egress TLP FIFO pop timing delay parameter
	Ingress TLP FIFO pop timing delay parameter
	Non-posted TLP request time-out parameter

	Host Memory class
	8-bit read command
	16-bit read command
	32-bit read command
	Read command
	8-bit write command
	16-bit write command
	32-bit write command
	Write command
	Immediate 8-bit read command
	Immediate 16-bit read command
	Immediate 32-bit read command
	Immediate read command
	Immediate 8-bit write command
	Immediate 16-bit write command
	Immediate 32-bit write command
	Immediate write command
	Memory access event wait command
	Memory access event callback command
	Event enabling command
	Event disabling command
	Memory dump command
	Read memory file command
	Write memory file command
	Immediate memory dump command
	Immediate read memory file command
	Immediate write memory file command

	Simulation Control class
	Wait command
	Reset command
	Simulation stop command
	Simulation quit command
	Simulation statistics print command
	Print message command
	Immediate print message command
	Run code string command
	Run script file command
	Expand script file command
	Log file generation command
	DrivExpress log style for message command enabling parameter
	License file setting parameter
	Command execution interval setting parameter
	Random seed value setting parameter
	Simulation time get parameter

	Pre-defined Macro
	Link State Definition Macro
	Memory Access Definition Macro
	Configuration Space Register Address Definition Macro
	Configuration Space Register Data Definition Macro

	Index

